bzoj1001
平面图求最小割;
其实看bzoj1001一开始着实把我怔住了
AC的人暴多,可自己完全没思路
后来看了某大牛的ppt,才会做
一个月前做这题的吧,今天来简单回忆一下;
首先是欧拉公式
如果一个连通的平面图有n个点,m条边和f个面,那么f=m-n+2
我们把原图的每个面看成新图的一个点,对于原图中的每条边
如果边只属于一个面,那么给对应点连一个自环;
如果边两侧各有一个面,那么给对应点之间连一条无向边
这样,新图与原图的边一一对应;
可以发现,新图的一条路径对应原图的一个割
于是我们原图起点终点连一条边,增加一个附加面(也可以理解为把外面言直线st分为两个面);
按上述方法建新图,于是最小割问题转化为对新图求最短路;
最短路可以用堆优化dij;
这题我的dij+heap写的有进步
const inf=;
type link=^node;
node=record
po,len:longint;
next:link;
end;
point=record
num,loc:longint;
end; var w:array[..] of link;
heap:array[..] of point;
where,d:array[..] of longint;
xie,hen,shu:array[..,..] of longint;
t,s,i,j,n,m,x,y:longint;
p:link; procedure swap(var a,b:point);
var c:point;
begin
c:=a;
a:=b;
b:=c;
end; procedure add(x,y,z:longint);
var p:link;
begin
new(p);
p^.po:=y;
p^.len:=z;
p^.next:=w[x];
w[x]:=p;
end; procedure up(i:longint);
var j,x,y:longint;
begin
j:=i shr ;
while j> do
begin
if heap[i].num<heap[j].num then
begin
x:=heap[i].loc;
y:=heap[j].loc;
where[x]:=j;
where[y]:=i;
swap(heap[i],heap[j]);
i:=j;
j:=i shr ;
end
else break;
end;
end; procedure sift(i:longint);
var j,x,y:longint;
begin
j:=i shl ;
while j<=s do
begin
if (j+<=s) and (heap[j].num>heap[j+].num) then inc(j);
if heap[i].num>heap[j].num then
begin
x:=heap[i].loc;
y:=heap[j].loc;
where[x]:=j;
where[y]:=i;
swap(heap[i],heap[j]);
i:=j;
j:=i shl ;
end
else break;
end;
end; procedure build; //复杂的建图,这种东西一定要谨慎,错误才会少;
var i:longint;
begin
for i:= to m- do
begin
add(,i+,hen[,i]);
add(i+,,hen[,i]);
end;
for i:= to n- do
begin
x:=(m-)*(*i-)+;
add(,x,shu[i,m]);
add(x,,shu[i,m]);
end; for i:= to m- do
begin
x:=t-m+i;
add(t,x,hen[n,i]);
add(x,t,hen[n,i]);
end;
for i:= to n- do
begin
x:=(m-)*(*i-)+;
add(t,x,shu[i,]);
add(x,t,shu[i,]);
end; for i:= to n- do
for j:= to m- do
begin
x:=(*i-)*(m-)+j+;
y:=x+m-;
add(x,y,hen[i,j]);
add(y,x,hen[i,j]);
end; for i:= to n- do
for j:= to m- do
begin
x:=(*i-)*(m-)+j;
y:=x+m;
add(x,y,shu[i,j]);
add(y,x,shu[i,j]);
end; for i:= to n- do
for j:= to m- do
begin
x:=(*i-)*(m-)+j+;
y:=x+m-;
add(x,y,xie[i,j]);
add(y,x,xie[i,j]);
end;
end; procedure dij; //最短路
var p:link;
mid,k,y:longint;
begin
p:=w[];
for i:= to t do
d[i]:=inf;
d[]:=;
while p<>nil do
begin
x:=p^.po;
d[x]:=min(d[x],p^.len);
p:=p^.next;
end;
s:=;
for i:= to t do
begin
inc(s);
heap[s].num:=d[i];
heap[s].loc:=i; //表示堆的这个位置是哪个点
where[i]:=s; //where表示这个点在堆的哪个位置
up(s);
end; for k:= to t do
begin
mid:=heap[].num;
if s= then break;
if mid=inf then break;
x:=heap[].loc;
y:=heap[s].loc;
where[y]:=; swap(heap[],heap[s]); //退堆
dec(s); sift();
p:=w[x];
while p<>nil do
begin
y:=p^.po;
if d[y]>p^.len+mid then //更新,入堆
begin
d[y]:=p^.len+mid;
heap[where[y]].num:=d[y];
up(where[y]);
end;
p:=p^.next;
end;
end;
end; begin
readln(n,m);
for i:= to n do
begin
for j:= to m- do
read(hen[i,j]);
end;
for i:= to n- do
begin
for j:= to m do
read(shu[i,j]);
end;
for i:= to n- do
begin
for j:= to m- do
read(xie[i,j]);
end; if n= then //注意这种情况要特判
begin
t:=inf;
for i:= to m- do
t:=min(hen[,i],t);
writeln(t);
halt;
end
else if m= then
begin
t:=inf;
for i:= to n- do
t:=min(t,shu[i,]);
writeln(t);
halt;
end;
t:=(n-)*(m-)*+; //计算新图总点数
build;
dij;
writeln(d[t]);
end.
bzoj1001的更多相关文章
- 【bzoj1001】 BeiJing2006—狼抓兔子
http://www.lydsy.com/JudgeOnline/problem.php?id=1001 (题目链接) 题意 给出一张图,求最小割. Solution1 最小割=最大流,所以直接Din ...
- 【BZOJ1001】狼抓兔子(网络流)
[BZOJ1001]狼抓兔子(网络流) 题面 Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨, ...
- BZOJ1001 [BeiJing2006]狼抓兔子 最小割 对偶图 最短路
原文链接http://www.cnblogs.com/zhouzhendong/p/8686871.html 题目传送门 - BZOJ1001 题意 长成上面那样的网格图求最小割. $n,m\leq ...
- bzoj1001狼抓兔子 对偶图优化
bzoj1001狼抓兔子 对偶图优化 链接 https://www.lydsy.com/JudgeOnline/problem.php?id=1001 思路 菜鸡总是要填坑的! 很明显让你求网格图的最 ...
- BZOJ1001 BJOI2006狼抓兔子(最小割+最短路)
显然答案就是最小割.直接跑dinic也能过,不过显得不太靠谱. 考虑更正确的做法.作为一个平面图,如果要把他割成两半,那么显然可以用一条曲线覆盖且仅覆盖所有割边.于是我们把空白区域看成点,隔开他们的边 ...
- 【BZOJ1001】[BeiJing2006]狼抓兔子 对偶图最短路
[BZOJ1001][BeiJing2006]狼抓兔子 Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子 ...
- 【BZOJ1001】狼抓兔子(平面图转对偶图,最短路)
[BZOJ1001]狼抓兔子(平面图转对偶图,最短路) 题面 BZOJ 洛谷 题解 这题用最小割可以直接做 今天再学习了一下平面图转对偶图的做法 大致的思路如下: 1.将源点到汇点中再补一条不与任何线 ...
- BZOJ1001 BeiJing2006 狼抓兔子 【网络流-最小割】*
BZOJ1001 BeiJing2006 狼抓兔子 Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较 ...
- 【bzoj1001】【最短路】【对偶图】【最大流转最小割】狼抓兔子题解
[BZOJ1001]狼抓兔子 1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 18872 Solved ...
随机推荐
- “Cache-control”常见的取值有private、no-cache、max-age、must-revalidate等
网页的缓存由HTTP消息头中的"Cache-Control" 来控制的,常见的取值有private.no-cache.max-age.must-revalidate等,默认为pri ...
- C# Winform程序请求管理员权限
如果你的Winform程序需要管理员权限才能正常执行,请加入如下代码: static class Program { /// <summary> /// 应用程序的主入口点. /// &l ...
- crontab定时任务中文乱码问题
手动执行都很正常的的脚本,添加到定时任务中日志文件全是乱码经过多方查证终于找到了原因! crontab启动的任务没有获取系统的环境变量,导致中文乱码解决办法: 在执行的脚步中添加编码方式或者添加对 ...
- iOS视频压缩存储至本地并上传至服务器-b
最近做了一个项目,我把其中的核心功能拿出来和大家分享一下,重点还是自己梳理一下. 这里关于视频转码存储我整理了两个方法,这两个方法都是针对相册内视频进行处理的. 1.该方法没有对视频进行压缩,只是将视 ...
- Codeforces Round #346 (Div. 2) F. Polycarp and Hay 并查集
题目链接: 题目 F. Polycarp and Hay time limit per test: 4 seconds memory limit per test: 512 megabytes inp ...
- COUNT(*)与COUNT(列名)的区别(转)
COUNT(*)与COUNT(列名)的区别 以前一直没有留意到COUNT(*)与COUNT(列名)的区别,昨天晚上无意中看到数据库系统工程师教程里面的一句话."如果null参与聚 ...
- vim查看函数原型以及关闭窗口
问题描述: vim中查看函数原型,以及关闭vim窗口 问题解决: (1)查看函数原型 使用Shift+K可以查看用户手册 (2)自定义函数 ...
- VB断点大全
MultiByteToWideChar, ANSI字符串转换成Unicode字符串WideCharToMultiByte, Unicode字符串转换成ANSI字符串 //--------------- ...
- WPF 视图分组排序
视图分组排序 效果: 实现步骤: 第一步:为分组做一个标题头,就是效果图中的浅蓝色部分: <DataGrid.GroupStyle>标签部分: <DataGrid x:Name=&q ...
- hdu 4101
比赛的时候先是受以前一个圣神海的题目 用了两遍DFS 第一遍标记出围墙 第二遍求围墙外和每块围墙降为1所需的攻击次数 结果爆栈 改为BFS后AC DFS的加了一句这个 #pragma comme ...