Prime Land
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 3211   Accepted: 1473

Description

Everybody in the Prime Land is using a prime base number system. In this system, each positive integer x is represented as follows: Let {pi}i=0,1,2,... denote the increasing sequence of all prime numbers. We know that x > 1 can be represented in only one way in the form of product of powers of prime factors. This implies that there is an integer kx and uniquely determined integers ekx, ekx-1, ..., e1, e0, (ekx > 0), that  The sequence 
(ekx, ekx-1, ... ,e1, e0)

is considered to be the representation of x in prime base number system. 
It is really true that all numerical calculations in prime base number system can seem to us a little bit unusual, or even hard. In fact, the children in Prime Land learn to add to subtract numbers several years. On the other hand, multiplication and division is very simple. 
Recently, somebody has returned from a holiday in the Computer Land where small smart things called computers have been used. It has turned out that they could be used to make addition and subtraction in prime base number system much easier. It has been decided to make an experiment and let a computer to do the operation ``minus one''. 
Help people in the Prime Land and write a corresponding program. 
For practical reasons we will write here the prime base representation as a sequence of such pi and ei from the prime base representation above for which ei > 0. We will keep decreasing order with regard to pi. 

Input

The input consists of lines (at least one) each of which except the last contains prime base representation of just one positive integer greater than 2 and less or equal 32767. All numbers in the line are separated by one space. The last line contains number 0.

Output

The output contains one line for each but the last line of the input. If x is a positive integer contained in a line of the input, the line in the output will contain x - 1 in prime base representation. All numbers in the line are separated by one space. There is no line in the output corresponding to the last ``null'' line of the input.

Sample Input

17 1
5 1 2 1
509 1 59 1
0

Sample Output

2 4
3 2
13 1 11 1 7 1 5 1 3 1 2 1

Source

Central Europe 1997
 
水、素数筛选和合数分解
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define ll long long
#define N 100000 ll tot;
bool isprime[N+];
ll prime[N+]; //1~tot-1
void getprime() //复杂度:O(n)
{
tot=;
memset(isprime,true,sizeof(isprime));
isprime[]=isprime[]=false;
for(ll i=;i<=N;i++)
{
if(isprime[i]) prime[tot++]=i;
for(ll j=;j<tot;j++)
{
if(i*prime[j]>N) break;
isprime[i*prime[j]]=false;
if(i%prime[j]==)
{
break;
}
}
}
}
ll fatcnt;
ll factor[N][]; //0~fatcnt-1
ll getfactors(ll x) //x>1
{
fatcnt=;
ll tmp=x;
for(ll i=;prime[i]<=tmp/prime[i];i++)
{
factor[fatcnt][]=;
if(tmp%prime[i]==)
{
factor[fatcnt][]=prime[i];
while(tmp%prime[i]==)
{
factor[fatcnt][]++;
tmp/=prime[i];
}
fatcnt++;
}
}
if(tmp!=)
{
factor[fatcnt][]=tmp;
factor[fatcnt++][]=;
}
return fatcnt;
}
ll pow(ll a,ll b)
{
ll ret=;
while(b)
{
if(b&) ret*=a;
a=a*a;
b>>=;
}
return ret;
}
int main()
{
getprime();
ll num,a,b,i;
char op;
while(scanf("%lld",&a),a)
{
scanf("%lld%c",&b,&op);
num=pow(a,b);
if(op!='\n')
{
while(scanf("%lld%lld%c",&a,&b,&op))
{
num*=pow(a,b);
if(op=='\n') break;
}
}
getfactors(num-);
for(i=fatcnt-;i>;i--) printf("%lld %lld ",factor[i][],factor[i][]);
printf("%lld %lld\n",factor[i][],factor[i][]);
}
return ;
}

[POJ 1365] Prime Land的更多相关文章

  1. POJ 1365 Prime Land(数论)

    题目链接: 传送门 Prime Land Time Limit: 1000MS     Memory Limit: 10000K Description Everybody in the Prime ...

  2. POJ 1365 Prime Land(整数拆分)

    题意:感觉题意不太好懂,题目并不难,就是给一些p和e,p是素数,e是指数,然后把这个数求出来,设为x,然后让我们逆过程输出x-1的素数拆分形式,形式与输入保持一致. 思路:素数打表以后正常拆分即可. ...

  3. 筛选法 || POJ 1356 Prime Land

    英文题读不懂题==质数幂的形式给你一个数 把它减一再用质数幂的形式表示出来 *解法:质数从小到大模拟除一遍,输入有点别扭 #include <iostream> #include < ...

  4. [暑假集训--数论]poj1365 Prime Land

    Everybody in the Prime Land is using a prime base number system. In this system, each positive integ ...

  5. 双向广搜 POJ 3126 Prime Path

      POJ 3126  Prime Path Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 16204   Accepted ...

  6. poj 2689 Prime Distance(大区间素数)

    题目链接:poj 2689 Prime Distance 题意: 给你一个很大的区间(区间差不超过100w),让你找出这个区间的相邻最大和最小的两对素数 题解: 正向去找这个区间的素数会超时,我们考虑 ...

  7. POJ 3126 Prime Path(素数路径)

    POJ 3126 Prime Path(素数路径) Time Limit: 1000MS    Memory Limit: 65536K Description - 题目描述 The minister ...

  8. Miller_rabin算法+Pollard_rho算法 POJ 1811 Prime Test

    POJ 1811 Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 32534   Accepted: 8 ...

  9. POJ 3518 Prime Gap(素数)

    POJ 3518 Prime Gap(素数) id=3518">http://poj.org/problem? id=3518 题意: 给你一个数.假设该数是素数就输出0. 否则输出比 ...

随机推荐

  1. 如何设置eclipse开发的web工程自动发布到tomcat的webapps下?

    使用eclipse开发web工程,在配置好服务器(tomcat)之后运行该web工程,发现能正常运行.但是问题在于,当你打开tomcat路径\webapps时,会发现没有该web应用(你的web工程名 ...

  2. (转载)总结一下SQL语句中引号(')、quotedstr()、('')、format()在SQL语句中的用法

    总结一下SQL语句中引号(').quotedstr().('').format()在SQL语句中的用法 总结一下SQL语句中引号(').quotedstr().('').format()在SQL语句中 ...

  3. (转载)异构数据库之间完全可以用SQL语句导数据

    <来源网址:http://www.delphifans.com/infoview/Article_398.html>异构数据库之间完全可以用SQL语句导数据 告诉你一个最快的方法,用SQL ...

  4. 小课堂Week8 例外处理设计的逆袭Part1

    小课堂Week8 例外处理设计的逆袭Part1 今天和大家讲一本书,书名是<例外处理设计的逆袭>. 为什么想讲这本书,是因为,例外处理在程序代码中到处存在,但是这些到底该如何写好,总觉得有 ...

  5. Spark Streaming揭秘 Day17 资源动态分配

    Spark Streaming揭秘 Day17 资源动态分配 今天,让我们研究一下一个在Spark中非常重要的特性:资源动态分配. 为什么要动态分配?于Spark不断运行,对资源也有不小的消耗,在默认 ...

  6. IEtester不靠谱

    对于刚刚学习前端的人来说,IEtester无疑是个测试神器, 刚开始用的时候,真有种如获至宝的兴奋. 然而,随着你学习的深入,你会慢慢地发现这个东西不太靠谱,而且会觉得没必要用它.为什么这么说呢? 首 ...

  7. MYSQL外键约束的参照操作

    如果表A的主关键字是表B中的字段,则该字段称为表B的外键,表A称为主表,表B称为从表.外键是用来实现参照完整性的,不同的外键约束方式将可以使两张表紧密的结合起来,特别是修改或者删除的级联操作将使得日常 ...

  8. 简单加密算法在C#中的实现

    加密是指通过某种特殊的方法,更改已有信息的内容,是的未授权的用户即使得到了加密的信息,如果没有正确的解密算法,那么也无法得到信息的内容. 方法一: //须添加对System.Web的引用 using ...

  9. Vue引发的getter和setter

    Vue引发的getter和setter 公司的新项目决定使用Vue.js来做,当我打印出Vue实例下的data对象里的属性时,发现了一个有趣的事情: 它的每个属性都有两个相对应的get和set方法,我 ...

  10. 获取不变的UDID-b

    iOS唯一标识的历史历程 iOS 6.0 在iOS6.0以前,是使用uniqueIdentifier来获取手机的唯一标识,后来苹果感觉这样会泄露用户隐藏,就封掉了这个方法: iOS 6.0系统新增了两 ...