欧拉降幂公式:http://blog.csdn.net/acdreamers/article/details/8236942

糖教题解处:http://blog.csdn.net/skywalkert/article/details/43955611

注:知道欧拉公式是远远不够的,还要知道欧拉降幂公式,因为当指数很大的时候需要用

然后欧拉降幂公式不要求A,C互质,但是B必须大于等于C的欧拉函数

吐槽:感觉记忆化搜索影响不大啊,当然肯定是因为太水了

这样复杂度是O(T*sqrt(p)*logp)

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <string.h>
#include <vector>
#include <math.h>
#include <stack>
#include <map>
using namespace std;
typedef long long LL;
const int N = ;
int qpow(int a,int b,int mod){
int ret=;
while(b){
if(b&)ret=1ll*ret*a%mod;
a=1ll*a*a%mod;
b>>=;
}
return ret;
}
int eular(int x){
int ret=x;
for(int i=;i*i<=x;++i){
if(x%i)continue;
ret=ret/i*(i-);
while(x%i==)x/=i;
}
if(x>)ret=ret/x*(x-);
return ret;
}
int f(int x){
if(x==)return ;
int phi=eular(x);
return qpow(,f(phi)+phi,x);
}
int main(){
int T;
scanf("%d",&T);
while(T--){
int p;
scanf("%d",&p);
printf("%d\n",f(p));
}
return ;
}

bzoj3884: 上帝与集合的正确用法 欧拉降幂公式的更多相关文章

  1. BZOJ3884: 上帝与集合的正确用法(欧拉函数 扩展欧拉定理)

    Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 3860  Solved: 1751[Submit][Status][Discuss] Descripti ...

  2. [bzoj3884]上帝与集合的正确用法——欧拉函数

    题目大意 题解 出题人博客 代码 #include <bits/stdc++.h> using namespace std; const int M = 10001000; int phi ...

  3. [BZOJ3884] 上帝与集合的正确用法 (欧拉函数)

    题目链接:  https://www.lydsy.com/JudgeOnline/problem.php?id=3884 题目大意: 给出 M, 求 $2^{2^{2^{2^{...}}}}$ % M ...

  4. BZOJ 3884: 上帝与集合的正确用法 [欧拉降幂]

    PoPoQQQ大爷太神了 只要用欧拉定理递归下去就好了.... 然而还是有些细节没考虑好: $(P,2) \neq 1$时分解$P=2^k*q$的形式,然后变成$2^k(2^{(2^{2^{...}} ...

  5. bzoj千题计划264:bzoj3884: 上帝与集合的正确用法

    http://www.lydsy.com/JudgeOnline/problem.php?id=3884 欧拉降幂公式 #include<cmath> #include<cstdio ...

  6. BZOJ3884: 上帝与集合的正确用法 拓展欧拉定理

    Description   根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...

  7. bzoj3884: 上帝与集合的正确用法(数论)

    感觉是今天洛谷月赛T3的弱化版,会写洛谷T3之后这题一眼就会写了... 还是欧拉扩展定理 于是就在指数上递归%phi(p)+phi(p)直到1,则后面的指数就都没用了,这时候返回,边回溯边快速幂.因为 ...

  8. BZOJ3884 上帝与集合的正确用法(欧拉函数)

    设f(n)为模n时的答案,由2k mod n=2k mod φ(n)+φ(n) mod n(并不会证),且k mod φ(n)=f(φ(n)),直接就可以得到一个递推式子.记搜一发即可. #inclu ...

  9. bzoj3884上帝与集合的正确用法

    Description   根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...

随机推荐

  1. JavaC 编译目录下所有的UTF-8编码的java文件

    javac -encoding UTF-8  *.java

  2. U盘安装Win7 64位

    试了好几遍,失败了的就不说了,直接记下成功的方案,方便下次. 方法为:用UltraISO刻镜像文件到U盘,然后U盘启动安装. 具体如下: 刻u盘之前一定要验证iso镜像的完整性啊(可以用文件校验工具与 ...

  3. sublime 复制黏贴等快捷键修改

    在 keyboard-binding user 里 增加个人配置来覆盖默认配置 [ { "keys": ["ctrl+z"], "command&qu ...

  4. hdu 2149 Public Sale (博弈规律题)

    #include<stdio.h> int main() { int n,m; while(scanf("%d %d",&m,&n)!=EOF) { ) ...

  5. LR_问题_无法使用LR的Controller,提示缺少license

    问题描述 无法使用LR的Controller,提示缺少license 问题解决 使用开始->所有程序->HP LoadRunner->loadrunner,在打开界面的左上角选择co ...

  6. JDK安装配置问题

    JDK安装过程中会有两个安装提示,一个是jdk的安装,一个是jre的安装

  7. MVC5中Model层开发数据注解

    ASP.NET MVC5中Model层开发,使用的数据注解有三个作用: 数据映射(把Model层的类用EntityFramework映射成对应的表) 数据验证(在服务器端和客户端验证数据的有效性) 数 ...

  8. C++:常类型Const

    常类型:使用类型修饰符const说明的类型,常类型的变量或对象成员的值在程序运行期间是不可改变的. 3.10.1 常引用 如果在说明引用时用const修饰,则被说明的引用为常引用.如果用常引用做形参, ...

  9. libsvm+detector_(libsvm参数说明)

    细分析了cvhop.cpp中的compute函数,可以直接调用它来获得样本HOG,然后训练得到检测算子 1.制作样本2.对每一张图片调用hog.compute(img, descriptors,Siz ...

  10. 你听说过PHP 的面向方面编程吗?

    面向方面编程(AOP)对于PHP来说是一个新的概念.现在PHP对于 AOP 并没有官方支持,但有很多扩展和库实现了这个特性.本课中,我们将使用 Go! PHP library 来学习 PHP 如何进行 ...