GCD and LCM

Time Limit: 20 Sec

Memory Limit: 256 MB

题目连接

http://acm.hdu.edu.cn/showproblem.php?pid=4497

Description

Given two positive integers G and L, could you tell me how many solutions of (x, y, z) there are, satisfying that gcd(x, y, z) = G and lcm(x, y, z) = L?
Note, gcd(x, y, z) means the greatest common divisor of x, y and z, while lcm(x, y, z) means the least common multiple of x, y and z.
Note 2, (1, 2, 3) and (1, 3, 2) are two different solutions.

Input

First line comes an integer T (T <= 12), telling the number of test cases.
The next T lines, each contains two positive 32-bit signed integers, G and L.
It’s guaranteed that each answer will fit in a 32-bit signed integer.

Output

For each test case, print one line with the number of solutions satisfying the conditions above.

Sample Input

2
6 72
7 33

Sample Output

72
0

HINT

题意

问你有多少个三元组,可以使得他们lcm等于b,gcd等于a

题解:

和二元组一样做,显然直接b/a之后,分解质因数,然后直接跑排列组合就好了

代码:

//qscqesze
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
#include <stack>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define test freopen("test.txt","r",stdin)
#define maxn 200001
#define mod 10007
#define eps 1e-9
int Num;
char CH[];
const int inf=0x3f3f3f3f;
const ll infll = 0x3f3f3f3f3f3f3f3fLL;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
inline void P(int x)
{
Num=;if(!x){putchar('');puts("");return;}
while(x>)CH[++Num]=x%,x/=;
while(Num)putchar(CH[Num--]+);
puts("");
}
//************************************************************************************** ll ans[maxn];
int main()
{
//test;
int t=read();
while(t--)
{
memset(ans,,sizeof(ans));
ll a,b;
scanf("%lld%lld",&a,&b);
if(b%a)
{
cout<<""<<endl;
continue;
}
ll c=b/a;
ll kiss=;
int tot=;
for(int i=;i<=c;i++)
{
if(c==)
break;
if(c%i==)
{
while(c%i==)
ans[tot]++,c/=i;
tot++;
}
}
for(int i=;i<tot;i++)
{
if(ans[i])
kiss*=ans[i]*;
}
cout<<kiss<<endl;
}
}

hdu 4497 GCD and LCM 数学的更多相关文章

  1. HDU 4497 GCD and LCM (合数分解)

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  2. HDU 4497 GCD and LCM(数论+容斥原理)

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  3. 数论——算数基本定理 - HDU 4497 GCD and LCM

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  4. hdu 4497 GCD and LCM (非原创)

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  5. HDU 4497 GCD and LCM (数学,质数分解)

    题意:给定G,L,分别是三个数最大公因数和最小公倍数,问你能找出多少对. 析:数学题,当时就想错了,就没找出规律,思路是这样的. 首先G和L有公因数,就是G,所以就可以用L除以G,然后只要找从1-(n ...

  6. HDU 4497 GCD and LCM(分解质因子+排列组合)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4497 题意:已知GCD(x, y, z) = G,LCM(x, y, z) = L.告诉你G.L,求满 ...

  7. HDU 4497 GCD and LCM (数论)

    题意:三个数x, y, z. 给出最大公倍数g和最小公约数l.求满足条件的x,y,z有多少组. 题解:设n=g/l n=p1^n1*p2^n2...pn^nk (分解质因数 那么x = p1^x1 * ...

  8. hdu 4497 GCD and LCM(2013 ACM-ICPC吉林通化全国邀请赛——题目重现)

    质分解 + 简单计数.当时去比赛的时候太年轻了...这道题都没敢想.现在回过头来做了一下,发现挺简单的,当时没做这道题真是挺遗憾的.这道题就是把lcm  / gcd 质分解,统计每个质因子的个数,然后 ...

  9. HDU 4497 GCD and LCM (分解质因数)

    链接 :  http://acm.hdu.edu.cn/showproblem.php?pid=4497 假设G不是L的约数 就不可能找到三个数. L的全部素因子一定包括G的全部素因子 而且次方数 ...

随机推荐

  1. hdu 1541 Stars(线段树单点更新,区间查询)

    题意:求坐标0到x间的点的个数 思路:线段树,主要是转化,根据题意的输入顺序,保证了等级的升序,可以直接求出和即当前等级的点的个数,然后在把这个点加入即可. 注意:线段树下标从1开始,所以把所有的x加 ...

  2. Drupal 7.23:函数module_invoke_all()注释

    /** * Invokes a hook in all enabled modules that implement it. * * All arguments are passed by value ...

  3. centos配置中文显示和中文输入

    我现在使用虚拟机运行centos,但是安装完成后系统显示英文,而且无法进行中文输入,这使我感到很烦躁,虽然我对自己说,这样可以逼迫自己适应全英文的环境,但作为一个中国人还是难以忍受,所以记录一下解决办 ...

  4. Prototype入门

    官网地址:http://prototypejs.org/ Prototype降低了客户端web编程的复杂性.为了解决现实存在的一些问题,Prototype对浏览器的脚本环境做了一些扩展,对原先笨拙的A ...

  5. linux_2015_0827_linux中一些常用词的发音and…

    linux相关 Unix: [ ju:niks ] 发音 (yew-nicks) 尤里克斯 GNU [ gəˈnju: ] 发音 (guh-noo) 葛扭 Linux: [ 'li:nэks ] 里那 ...

  6. linux 如何让程序在开机时启动,关机前关闭

    可以将自己所写的script的文件名写入/etc/rc.d/rc.local(用户自定义开机启动程序) 中,在/etc/rc.d/init.d 中貌似也可以

  7. 【LeetCode】7 & 8 - Reverse Integer & String to Integer (atoi)

    7 - Reverse digits of an integer. Example1: x = 123, return 321Example2: x = -123, return -321 Notic ...

  8. mybatis系列-16-spring和mybatis整合

    16.1     整合思路 需要spring通过单例方式管理SqlSessionFactory. spring和mybatis整合生成代理对象,使用SqlSessionFactory创建SqlSess ...

  9. DOS 命令大全

    MS DOS 命令大全 一.基础命令 1 dir 无参数:查看当前所在目录的文件和文件夹. /s:查看当前目录已经其所有子目录的文件和文件夹. /a:查看包括隐含文件的所有文件. /ah:只显示出隐含 ...

  10. Camera拍照声设定

    在某些国家(比如Japan),为了防止偷拍,强制拍照声是需要从Speaker出来的(即使插入耳机的情况下). 实现该功能比较简单的方法就是将拍照声类型设置为Ringtone 或 Alarm 或 Not ...