思路:定义一个三维数组dp[x][i][j]其中x为now和pre两种状态,now表示当前两行最优解,pre表示出了本行外,前两行的最优解。那么状态转移方程为

dp[now][j][k]=max(dp[now][j][k],dp[pre][k][r]+num[i][j][1])。num[i][j][1]表示第i行的第j个状态的1的个数。转移条件是!(num[i][j][0]&num[i-1][k][0])&&!(num[i][j][0]&num[i-2][r][0])&&!(num[i-1][k][0]&num[i-2][r][0])为真。

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#define Maxn 1010
using namespace std;
int dp[][Maxn][Maxn],now,pre,num[][Maxn][],cnt1,cnt2,cnt3,graphic[][],n,m;
void dfs(int u,int j,int f)
{
int i;
if(j==m)
{
int sum,cc;
sum=cc=;
for(i=m;i>=;i--)
{
sum+=graphic[u][i]*(<<(m-i));
if(graphic[u][i])
cc++;
}
if(f<=)
{
if(graphic[u][j])
{
if(sum!=)
{
num[u][++cnt1][]=sum-;
num[u][cnt1][]=cc-;
}
}
else
{
num[u][++cnt1][]=sum;
num[u][cnt1][]=cc;
}
}
else
{
if(graphic[u][j])
{
if(sum!=)
{
num[u][++cnt1][]=sum-;
num[u][cnt1][]=cc-;
}
num[u][++cnt1][]=sum;
num[u][cnt1][]=cc;
}
else
{
num[u][++cnt1][]=sum;
num[u][cnt1][]=cc;
}
}
return ;
}
if(f<=)
{
if(graphic[u][j]==)
{
graphic[u][j]=;
dfs(u,j+,f+);
graphic[u][j]=;
}
else
dfs(u,j+,f+);
}
else
{
if(graphic[u][j])
{
dfs(u,j+,);
graphic[u][j]=;
dfs(u,j+,f+);
graphic[u][j]=;
}
else
dfs(u,j+,f+);
}
}
void out(int x)
{
if(x==||x==)
{
printf("%d",x);
return ;
}
int temp=x%;
out(x/);
printf("%d",temp);
}
int main()
{
int i,j,k,r;
char str[];
memset(graphic,,sizeof(graphic));
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(dp,,sizeof(dp));
memset(num,,sizeof(num));
memset(graphic,,sizeof(graphic));
for(i=;i<=n;i++)
{
scanf("%s",&str);
for(j=;j<m;j++)
{
if(str[j]=='P')
graphic[i][j+]=;
else
graphic[i][j+]=;
}
}
dfs(,,);
cnt2=cnt1;
cnt1=;
dfs(,,);
now=,pre=;
for(i=;i<=cnt2;i++)
for(j=;j<=cnt1;j++)
{
if(!(num[][i][]&num[][j][]))
dp[now][j][i]=num[][i][]+num[][j][];
}
for(i=;i<=n;i++)
{
cnt3=cnt2,cnt2=cnt1,cnt1=;
dfs(i,,);
now=!now,pre=!pre;
for(j=;j<=cnt1;j++)
for(k=;k<=cnt2;k++)
for(r=;r<=cnt3;r++)
{
if(!(num[i][j][]&num[i-][k][])&&!(num[i][j][]&num[i-][r][])&&!(num[i-][k][]&num[i-][r][]))
dp[now][j][k]=max(dp[now][j][k],dp[pre][k][r]+num[i][j][]);
}
}
int ans=;
for(i=;i<=cnt1;i++)
for(j=;j<=cnt2;j++)
{
ans=max(ans,dp[now][i][j]);
}
printf("%d\n",ans);
}
return ;
}

poj 1185 炮兵阵地 状态压缩dp的更多相关文章

  1. POJ - 1185 炮兵阵地 (状态压缩)

    题目大意:中文题目就不多说大意了 解题思路: 1.每行最多仅仅有十个位置,且不是山地就是平原,那么就能够用1表示山地,0表示平原,将每一行的状态进行压缩了 2.接着找出每行能放炮兵的状态.先不考虑其它 ...

  2. POJ 3254 炮兵阵地(状态压缩DP)

    题意:由方格组成的矩阵,每个方格可以放大炮用P表示,不可以放大炮用H表示,求放最多的大炮,大炮与大炮间不会互相攻击.大炮的攻击范围为两个方格. 分析:这次当前行的状态不仅和上一行有关,还和上上行有关, ...

  3. POJ 1185 炮兵阵地 状压dp

    题目链接: http://poj.org/problem?id=1185 炮兵阵地 Time Limit: 2000MS Memory Limit: 65536K 问题描述 司令部的将军们打算在N*M ...

  4. POJ1185 - 炮兵阵地(状态压缩DP)

    题目大意 中文的..直接搬过来... 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平 ...

  5. poj - 1185 炮兵阵地 状压DP 解题报告

    炮兵阵地 Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 21553   Accepted: 8363 Description ...

  6. POJ 1185炮兵阵地 (状压DP)

    题目链接 POJ 1185 今天艾教留了一大堆线段树,表示做不动了,就补补前面的题.QAQ 这个题,我第一次写还是像前面HDU 2167那样写,发现这次影响第 i 行的还用i-2行那样,那以前的方法就 ...

  7. [poj 1185] 炮兵阵地 状压dp 位运算

    Description 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原(用&quo ...

  8. luogu2704 炮兵阵地 状态压缩DP

    题目大意:一个N*M的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),在每一格平原地形上最多可以布置一支炮兵部队,能攻击到的区域:沿横向左右各两格,沿纵向上 ...

  9. POJ1185炮兵阵地(状态压缩 + dp)

    题目链接 题意:给出一张n * m的地图,其中 有的地方能放大炮,有的地方不能,大炮与上下左右两个单位范围内会相互攻击,问最多能放几个大炮 能放大炮为1不能放大炮为0,把每一行看做一个状态,要除去同一 ...

随机推荐

  1. Gym 100818I Olympic Parade(位运算)

    Olympic Parade http://acm.hust.edu.cn/vjudge/contest/view.action?cid=101594#problem/I [题意]: 给出N个数,找出 ...

  2. 蓝桥杯 入门训练 Fibonacci数列

      入门训练 Fibonacci数列   时间限制:1.0s   内存限制:256.0MB        问题描述 Fibonacci数列的递推公式为:Fn=Fn-1+Fn-2,其中F1=F2=1. ...

  3. [C语言 - 2] C语言变量

    A.变量的作用域: 1.局部变量:在函数或者代码块内部定义的变量 作用域:从定义处到代码块结束 生命周期:从定义处分配控件,代码块结束后被回收 局部变量没有默认值,要自己初始化   2.全局变量:在函 ...

  4. hbase 学习笔记一---基本概念

          说在前面,本文部分内容来源于社区官网经过适度翻译,部分根据经验总结,部分是抄袭网络博文,(不一一列举引用,在此致歉)一并列在一起,本文的目的,希望能总结出一些有用的,应该注意到的东西,基本 ...

  5. Windows 下如何设置 只允许固定IP远程访问

    通过设置IP安全策略限制固定IP访问 说明: (1)以XP环境为例,步骤:先禁止所有IP,再允许固定IP访问. (2)配置过程中很多步骤图是重复的,一些没价值的图就省略了: (3)光看的话可能中间重复 ...

  6. C#全角半角转换函数

    Code#region 全角半角转换 /// <summary> /// 转全角的函数(SBC case) /// </summary> /// <param name= ...

  7. OpenNebula 创建虚拟机失败(未解决)

    Tue Jul :: [ReM][D]: Req: UID: AclInfo invoked Tue Jul :: [ReM][D]: Req: UID: AclInfo result SUCCESS ...

  8. 基于linux 的2048

    在 debian 下写了一个 2048, 效果如下: 感兴趣的朋友可以在这里(http://download.csdn.net/download/kamsau/7330933)下载. 版权声明:本文为 ...

  9. 表单校验之datatype

    凡要验证格式的元素均需绑定datatype属性,datatype可选值内置有10类,用来指定不同的验证格式. 如果还不能满足您的验证需求,可以传入自定义datatype,自定义datatype是一个非 ...

  10. C#的图片拼接

    貌似很长时间没有写博客了,感觉再不写都要废了. 这段时间确实迷茫得不行,整天混混顿顿的,逃避这个逃避那个,话说已经辞职一个月了…… 这几天在学用libgdx做安卓上的游戏,感觉缺少一个图片拼接的工具, ...