poj 1185 炮兵阵地 状态压缩dp
思路:定义一个三维数组dp[x][i][j]其中x为now和pre两种状态,now表示当前两行最优解,pre表示出了本行外,前两行的最优解。那么状态转移方程为
dp[now][j][k]=max(dp[now][j][k],dp[pre][k][r]+num[i][j][1])。num[i][j][1]表示第i行的第j个状态的1的个数。转移条件是!(num[i][j][0]&num[i-1][k][0])&&!(num[i][j][0]&num[i-2][r][0])&&!(num[i-1][k][0]&num[i-2][r][0])为真。
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#define Maxn 1010
using namespace std;
int dp[][Maxn][Maxn],now,pre,num[][Maxn][],cnt1,cnt2,cnt3,graphic[][],n,m;
void dfs(int u,int j,int f)
{
int i;
if(j==m)
{
int sum,cc;
sum=cc=;
for(i=m;i>=;i--)
{
sum+=graphic[u][i]*(<<(m-i));
if(graphic[u][i])
cc++;
}
if(f<=)
{
if(graphic[u][j])
{
if(sum!=)
{
num[u][++cnt1][]=sum-;
num[u][cnt1][]=cc-;
}
}
else
{
num[u][++cnt1][]=sum;
num[u][cnt1][]=cc;
}
}
else
{
if(graphic[u][j])
{
if(sum!=)
{
num[u][++cnt1][]=sum-;
num[u][cnt1][]=cc-;
}
num[u][++cnt1][]=sum;
num[u][cnt1][]=cc;
}
else
{
num[u][++cnt1][]=sum;
num[u][cnt1][]=cc;
}
}
return ;
}
if(f<=)
{
if(graphic[u][j]==)
{
graphic[u][j]=;
dfs(u,j+,f+);
graphic[u][j]=;
}
else
dfs(u,j+,f+);
}
else
{
if(graphic[u][j])
{
dfs(u,j+,);
graphic[u][j]=;
dfs(u,j+,f+);
graphic[u][j]=;
}
else
dfs(u,j+,f+);
}
}
void out(int x)
{
if(x==||x==)
{
printf("%d",x);
return ;
}
int temp=x%;
out(x/);
printf("%d",temp);
}
int main()
{
int i,j,k,r;
char str[];
memset(graphic,,sizeof(graphic));
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(dp,,sizeof(dp));
memset(num,,sizeof(num));
memset(graphic,,sizeof(graphic));
for(i=;i<=n;i++)
{
scanf("%s",&str);
for(j=;j<m;j++)
{
if(str[j]=='P')
graphic[i][j+]=;
else
graphic[i][j+]=;
}
}
dfs(,,);
cnt2=cnt1;
cnt1=;
dfs(,,);
now=,pre=;
for(i=;i<=cnt2;i++)
for(j=;j<=cnt1;j++)
{
if(!(num[][i][]&num[][j][]))
dp[now][j][i]=num[][i][]+num[][j][];
}
for(i=;i<=n;i++)
{
cnt3=cnt2,cnt2=cnt1,cnt1=;
dfs(i,,);
now=!now,pre=!pre;
for(j=;j<=cnt1;j++)
for(k=;k<=cnt2;k++)
for(r=;r<=cnt3;r++)
{
if(!(num[i][j][]&num[i-][k][])&&!(num[i][j][]&num[i-][r][])&&!(num[i-][k][]&num[i-][r][]))
dp[now][j][k]=max(dp[now][j][k],dp[pre][k][r]+num[i][j][]);
}
}
int ans=;
for(i=;i<=cnt1;i++)
for(j=;j<=cnt2;j++)
{
ans=max(ans,dp[now][i][j]);
}
printf("%d\n",ans);
}
return ;
}
poj 1185 炮兵阵地 状态压缩dp的更多相关文章
- POJ - 1185 炮兵阵地 (状态压缩)
题目大意:中文题目就不多说大意了 解题思路: 1.每行最多仅仅有十个位置,且不是山地就是平原,那么就能够用1表示山地,0表示平原,将每一行的状态进行压缩了 2.接着找出每行能放炮兵的状态.先不考虑其它 ...
- POJ 3254 炮兵阵地(状态压缩DP)
题意:由方格组成的矩阵,每个方格可以放大炮用P表示,不可以放大炮用H表示,求放最多的大炮,大炮与大炮间不会互相攻击.大炮的攻击范围为两个方格. 分析:这次当前行的状态不仅和上一行有关,还和上上行有关, ...
- POJ 1185 炮兵阵地 状压dp
题目链接: http://poj.org/problem?id=1185 炮兵阵地 Time Limit: 2000MS Memory Limit: 65536K 问题描述 司令部的将军们打算在N*M ...
- POJ1185 - 炮兵阵地(状态压缩DP)
题目大意 中文的..直接搬过来... 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平 ...
- poj - 1185 炮兵阵地 状压DP 解题报告
炮兵阵地 Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 21553 Accepted: 8363 Description ...
- POJ 1185炮兵阵地 (状压DP)
题目链接 POJ 1185 今天艾教留了一大堆线段树,表示做不动了,就补补前面的题.QAQ 这个题,我第一次写还是像前面HDU 2167那样写,发现这次影响第 i 行的还用i-2行那样,那以前的方法就 ...
- [poj 1185] 炮兵阵地 状压dp 位运算
Description 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原(用&quo ...
- luogu2704 炮兵阵地 状态压缩DP
题目大意:一个N*M的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),在每一格平原地形上最多可以布置一支炮兵部队,能攻击到的区域:沿横向左右各两格,沿纵向上 ...
- POJ1185炮兵阵地(状态压缩 + dp)
题目链接 题意:给出一张n * m的地图,其中 有的地方能放大炮,有的地方不能,大炮与上下左右两个单位范围内会相互攻击,问最多能放几个大炮 能放大炮为1不能放大炮为0,把每一行看做一个状态,要除去同一 ...
随机推荐
- Servlet学习笔记(1)--第一个servlet&&三种状态对象(cookie,session,application)&&Servlet的生命周期
servlet的404错误困扰了两天,各种方法都试过了,翻书逛论坛终于把问题解决了,写此博客来纪念自己的第一个servlet经历. 下面我会将自己的编写第一个servlet的详细过程提供给初学者,大神 ...
- Spring bean configuration inheritance
In Spring, the inheritance is supported in bean configuration for a bean to share common values, pro ...
- 修改eclipse默认编码方式
设置js文件的默认编码格式为UTF-8 在Windows->Preference页面中,选择General->Content Types ...
- [c++]this指针理解
#include <iostream> using namespace std; /** * this 指针理解 */ class A{ int i; public: void hello ...
- 《JavaScript高级程序设计》 读书笔记(三)
操作符 递增和递减操作符 var num1 = 2; var num2 = 20; var num3 = --num1 + num2; // 等于 21 var num4 = num1 + num2; ...
- 通过克隆MAC地址 破解网通电信封路由
通过克隆MAC地址 破解网通电信封路由 电信封路由方法一:先确定申请上网的电脑单机状态下已经能够上网.就说明该电脑网卡的MAC地址是合法的MAC地址.进入系统的MSDOS方式,发布ipconfig/a ...
- contiki makefile框架分析 < contiki学习之一 >
在linux下的工程编译,基本都可以使用makefile这个工具来完成.Contiki OS亦如此,下面分析contiki整个Makefile的框架,对makefile的具体内容暂不做分析.本文依赖于 ...
- BZOJ 1079: [SCOI2008]着色方案 记忆化搜索
1079: [SCOI2008]着色方案 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...
- 首发Zend Studio 10.6正式版注册破解(2014-02-06更新)
1.写在前头以下文章没有图片说明,如果你没有耐性看或想看图文并茂的图片文章请绕道,谢谢配合.转发请标明转自http://www.geekso.com/ZendStudio100/以下方法仅供技术交流学 ...
- 文本编辑器Nano实用快捷键
一.复制.剪切和粘贴文本 1.行复制.剪切和粘贴 Alt+6:复制光标所在行. Ctrl+K:剪切光标所在行. Ctrl+U:粘贴. 2.自由复制.剪切和粘贴 自由复制: Ctrl+6:设置复制文本的 ...