public class Longest_Increasing_Subsequence {
/**
* O(N^2)
* DP
* 思路:
* 示例:[1,0,2,4,10,5]
* 找出以上数组的LIS的长度
* 分析:
* 只要求长度,并不要求找出具体的序列
* 问题可以拆分为
* 1. 对于[1],找出LIS
* 2. 对于[1,0],找出LIS
* 3. 对于[1,0,2],找出LIS
* 4. 对于[1,0,2,4],找出LIS
* ...
* 最后,对于[1,0,2,4,10,5],找出LIS
* 再进一步思考,例如:
* 找出[-1,0,1,0,2,4]的LIS,就要找到在4之前符合条件(都比4小且都为升序)的LIS的长度 => [-1,0,1]是满足情况的(最长,都是升序,都比4小)
* 那么就要有一个数据结构来记录到某一个index上,LIS的长度。因为每一个index上的LIS长度并不是固定为前一个加1,所以每一个都要记录下来 => 数组dp[]
* dp[i]记录的是,在i这个index上,LIS的长度
* 比如:
* index 0 1 2 3 4 5
* dp:[ 1,2,3,1,4,5] //dp数组
* ar:[-1,0,1,0,2,4] //原数组
* dp[1] = 2表示在1这个index上,LIS的长度是2([-1,0])
* dp[4] = 4表示在4这个index上,LIS的长度是4([-1,0,1,2])
* ----------------------------
* 状态转换方程:
* dp[i] = dp[k] + 1; (dp[k] = max(dp[0], dp[1], ... dp[i-1])) // dp[i] = 在i以前最大的LIS长度加上1
* 以上方程的成立条件:
* nums[k] < nums[i] //保持递增序列的属性
*/ /**
* O(N^2)
*/
public int lengthOfLIS(int[] nums) {
int[] dp = new int[nums.length];
dp[0] = 1;
for (int i = 1; i < nums.length; i++) {
int beforeMaxLen = dp[i];
// 在0 ~ i之间比较LIS的长度
for(int j = 0; j < i; j++) {
if (nums[j] < nums[i] && dp[j] > beforeMaxLen) { //注意dp[j] > beforeMaxLen,新的长度要大于之前选出来的长度才能更新
beforeMaxLen = dp[j];
}
}
dp[i] = beforeMaxLen + 1;
}
int max = 0;
// 在数组里找出最大的长度即可
for (int i = 0; i < nums.length; i++) {
if (dp[i] > max){
max = dp[i];
}
}
return max;
} /**
* O(N*logN)
* 思路:
* 满足递增序列,就直接加入list中
* 如果发现有降序出现,找出在原数组中比它大的第一个数的index,然后在list中替换那个数
* 最后返回list的长度
* 原理:
* 因为只求长度,所以没有必要存储确切的sequence
*/
public int lengthOfLIS_2(int[] nums) {
List<Integer> list = new ArrayList<>();
for(int num : nums) {
if(list.isEmpty() || list.get(list.size() - 1) < num) { // 不满足递增序列
list.add(num);
} else {
list.set(findFirstLargeEqual(list, num), num);
}
} return list.size();
} private int findFirstLargeEqual(List<Integer> list, int target)
{
int start = 0;
int end = list.size() - 1;
while(start < end) {
int mid = start + (end - start) / 2;
if(list.get(mid) < target) {
start = mid + 1;
}
else {
end = mid;
}
} return end;
} /**
* 测试用
*/
public static void main(String[] args) {
Longest_Increasing_Subsequence lis = new Longest_Increasing_Subsequence();
int[] a = {-1,0,1,0,2,4};
System.out.print(lis.lengthOfLIS_2(a));
}
}

Longest Increasing Sequence的更多相关文章

  1. 动态规划 ---- 最长不下降子序列(Longest Increasing Sequence, LIS)

    分析: 完整 代码: // 最长不下降子序列 #include <stdio.h> #include <algorithm> using namespace std; ; in ...

  2. [Leetcode] Binary search, DP--300. Longest Increasing Subsequence

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  3. CSUOJ 1551 Longest Increasing Subsequence Again

    1551: Longest Increasing Subsequence Again Time Limit: 2 Sec  Memory Limit: 256 MBSubmit: 75  Solved ...

  4. [LeetCode] Binary Tree Longest Consecutive Sequence 二叉树最长连续序列

    Given a binary tree, find the length of the longest consecutive sequence path. The path refers to an ...

  5. [LintCode] Longest Increasing Subsequence 最长递增子序列

    Given a sequence of integers, find the longest increasing subsequence (LIS). You code should return ...

  6. The Longest Increasing Subsequence (LIS)

    传送门 The task is to find the length of the longest subsequence in a given array of integers such that ...

  7. SPOJ LIS2 Another Longest Increasing Subsequence Problem 三维偏序最长链 CDQ分治

    Another Longest Increasing Subsequence Problem Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://a ...

  8. [LeetCode] Binary Tree Longest Consecutive Sequence II 二叉树最长连续序列之二

    Given a binary tree, you need to find the length of Longest Consecutive Path in Binary Tree. Especia ...

  9. 673. Number of Longest Increasing Subsequence

    Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...

随机推荐

  1. windows本地无法启动sqlserver服务

    解决方法:进入服务列表后,选择sqlserver服务,右键然后选择属性,然后在登陆选项卡中,选择本地系统帐户,这样就可以启动sqlserver服务了

  2. MongoDB安装及简单实验

    1.Windows下安装MongoDB http://www.mongodb.org/downloads 下载msi,下一步下一步… 安装完毕后,到安装目录的bin目录下执行mongod启动数据库服务 ...

  3. ios中addtarget的用法

    1.addtarget 的.部分使用事件没有直接的操作方式,需要进行调用.就要用addTarget. - (void)setupCustomView { self.customView = [[CHV ...

  4. JS创建类以及类的方法(StringBuffeer类)

    创建StringBuffer类以及toString,append()方法 //创建一个StringBuffer类 ,此类有两个方法:一个是append方法一个是toString方法 function ...

  5. Android自动化测试之Monkeyrunner从零开始(三)

    转自http://www.51testing.com/html/81/22381-854342.html 时光过得太快了,一晃离上一篇monkeyrunner系列的博客已经一年多了.这一年多时间经历了 ...

  6. Qt之运行一个实例进程

    简述 发布程序的时候,我们往往会遇到这种情况: 只需要用户运行一个实例进程 用户可以同时运行多个实例进程 一个实例进程的软件有很多,例如:360.酷狗- 多个实例进程的软件也很多,例如:Visual ...

  7. css实现超出一行后用省略号显示

    css实现超出一行后用省略号显示 a{display:inline-block; text-overflow:ellipsis; white-space:nowrap; overflow:hidden ...

  8. li添加浮动时不能完全包裹的方法

    <html> <head> <meta http-equiv="Content-Type" content="text/html;chars ...

  9. unison + inotify 实现文件实时双向同步部署步骤

    unison + inotify 实现文件实时双向同步部署步骤 一. Unison简介 Unison是Windows.Linux以及其他Unix平台下都可以使用的文件同步工具,它能使两个文件夹(本地或 ...

  10. 极光推送使用实例(二) Android客户端

    上一篇简单介绍了极光推送在Java服务端的实现,如果感兴趣的可以看一下极光推送使用实例(一)JAVA服务端.这篇文章介绍下极光推送在Android客户端的实现. JPush Android SDK 是 ...