离散化+带权并查集

题意:长度为n的0和1组成的字符串,然后问第L和R位置之间有奇数个1还是偶数个1. 根据这些回答, 判断第几个是错误(和之前有矛盾)的。

思路:此题同HDU 3038 差不多,询问L~R之间的1的奇偶性,相当于HDU 3038 的L~R之间的和。所以合并的时候,合并L-1和R(L-1为父亲)。 则R相对L-1的权值(不包括L-1)即为L~R之间1的个数(0代表有偶数个1,1代表有奇数个1).

  之所以为什么合并的是L-1和R,举个例子: 1 2 even 3 4 odd 首先合并0、2,2相对0的权值为0,接着合并2、4,4相对2的权值为1。 那么之后在查找4的根节点时,会更新4与根节点的关系,则4相对0的权值为:(4相对2的权值+2相对0的权值)%2,也可以用异或来更新。 因为权值不包括父节点在内(即4相对2的不包括2,2相对0的不包括0),所以结果就是1、2、3、4中1的个数的奇偶性。

  每次读取数据时,先查找L-1和R的根节点。

  1:如果相等,均为f,则判断L~R的1的奇偶是否与数据c相同,即(val[L-1]-val[R]+2)%2是否等于c,也可以用异或val[L-1]^val[R];

  2:如果不同,则合并。L-1的根节点为fx,R的根节点为fy,则fy相对fx的权值val[fy]=(c+val[L-1]-val[R]+2)%2,    或者val[fy]=c^val[L-1]^val[R].

  当找到矛盾时,直接退出即可,接下来的数据不需要管它。

  由于n的数据很大,10亿,但查询只有5000次,也就是最多出现1万个数,因此采用离散化,不影响结果。

附两种离散的方法:

1:用map建立映射

#include <iostream>
#include <string.h>
#include <stdio.h>
#include <map> /*
125ms
*/
using namespace std;
const int maxn=;
int father[maxn];
int val[maxn]; //val[i]表示i相对根节点的权值
int n,m;
map<int,int> hash_idx; void init(){
for(int i=;i<maxn;i++){
father[i]=i;
val[i]=;
}
} int find_root(int x){
if(father[x]==x)
return x;
int tmp=father[x];
father[x]=find_root(father[x]);
val[x]=val[x]^val[tmp];
return father[x];
}
void Union(int x,int y){
father[y]=x;
}
int main()
{
int a,b,c,add,x,y,fx,fy,i;
char str[];
scanf("%d",&n);
scanf("%d",&m);
init();
add=;
for(i=;i<=m;i++){
scanf("%d%d%s",&a,&b,str);
if(str[]=='o')
c=;
else
c=;
a--;
//用map来离散化,如果map中还不存在关于a、b的映射,则新建映射
if(hash_idx.find(a)==hash_idx.end()){
hash_idx[a]=add++;
}
if(hash_idx.find(b)==hash_idx.end()){
hash_idx[b]=add++;
}
x=hash_idx[a];
y=hash_idx[b];
fx=find_root(x);
fy=find_root(y);
if(fx==fy){
if((val[x]^val[y])!=c){
break;
}
}
else{
Union(fx,fy);
val[fy]=val[x]^val[y]^c;
}
}
printf("%d\n",i-);
return ;
}

2.用邻接表离散

#include <iostream>
#include <string.h>
#include <stdio.h>
#include <map> /*
47ms
*/
using namespace std;
const int maxn=;
const int mod=;
int father[maxn];
int val[maxn]; //val[i]表示i相对根节点的权值
int n,m,cnt;
int head[maxn]; struct Node{
int u; //即点的编号
int next;
}e[maxn]; //用邻接表来离散化,x的映射即为边的编号cnt。
int get_hash(int x){
int h=x%mod,i;
for(i=head[h];i!=-;i=e[i].next){
if(e[i].u==x)
return i;
}
e[cnt].next=head[h];
e[cnt].u=x;
head[h]=cnt++;
return cnt-;
} void init(){
cnt=;
memset(head,-,sizeof(head));
for(int i=;i<maxn;i++){
father[i]=i;
val[i]=;
}
} int find_root(int x){
if(father[x]==x)
return x;
int tmp=father[x];
father[x]=find_root(father[x]);
val[x]=val[x]^val[tmp];
return father[x];
}
void Union(int x,int y){
father[y]=x;
}
int main()
{
int a,b,c,x,y,fx,fy,i;
char str[];
scanf("%d",&n);
scanf("%d",&m);
init();
for(i=;i<=m;i++){
scanf("%d%d%s",&a,&b,str);
if(str[]=='o')
c=;
else
c=;
a--;
//获取相应的映射,即离散的值
x=get_hash(a);
y=get_hash(b);
fx=find_root(x);
fy=find_root(y);
if(fx==fy){
if((val[x]^val[y])!=c){
break;
}
}
else{
Union(fx,fy);
val[fy]=val[x]^val[y]^c;
}
}
printf("%d\n",i-);
return ;
}

POJ 1733 Parity game(离散化+带权并查集)的更多相关文章

  1. poj 1733 Parity game(带权并查集+离散化)

    题目链接:http://poj.org/problem?id=1733 题目大意:有一个很长很长含有01的字符串,长度可达1000000000,首先告诉你字符串的长度n,再给一个m,表示给你m条信息, ...

  2. POJ 1733 Parity game 【带权并查集】+【离散化】

    <题目链接> 题目大意: 一个由0,1组成的序列,每次给出一段区间的奇偶,问哪一条信息不合法. 解题分析: 我们用s[i]表示前i个数的前缀和,那么a b even意味着s[b]和s[a- ...

  3. POJ 1733 Parity game(带权并查集)

    题目链接:http://poj.org/problem?id=1733 题目大意:给你m条信息,每条信息告诉你区间l~r的1的个数是奇数还是偶数,如果后面出现信息跟前面矛盾则这条信息是错误的,问在第一 ...

  4. POJ1733:Parity Game(离散化+带权并查集)

    Parity Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12853   Accepted: 4957 题目链接 ...

  5. POJ 1988 Cube Stacking( 带权并查集 )*

    POJ 1988 Cube Stacking( 带权并查集 ) 非常棒的一道题!借鉴"找回失去的"博客 链接:传送门 题意: P次查询,每次查询有两种: M x y 将包含x的集合 ...

  6. POJ-1733 Parity game(带权并查集区间合并)

    http://poj.org/problem?id=1733 题目描述 你和你的朋友玩一个游戏.你的朋友写下来一连串的0或者1.你选择一个连续的子序列然后问他,这个子序列包含1的个数是奇数还是偶数.你 ...

  7. Poj1733 Parity Game(带权并查集)

    题面 Poj 题解 反正只要你判断是否满足区间的奇偶性,假设每一位要么是\(1\)要么是\(0\)好了. 假设有\(S\)的前缀和为\(sum[]\),则有: 若\(S[l...r]\)中有奇数个\( ...

  8. POJ1733 Parity game 【带权并查集】*

    POJ1733 Parity game Description Now and then you play the following game with your friend. Your frie ...

  9. AcWing:239. 奇偶游戏(前缀和 + 离散化 + 带权并查集 + 异或性质 or 扩展域并查集 + 离散化)

    小A和小B在玩一个游戏. 首先,小A写了一个由0和1组成的序列S,长度为N. 然后,小B向小A提出了M个问题. 在每个问题中,小B指定两个数 l 和 r,小A回答 S[l~r] 中有奇数个1还是偶数个 ...

随机推荐

  1. C++ 双链表基本操作

    上一篇博客主要总结了单向链表,这次再总结一下双向链表. 1.概念 双向链表也叫双链表,是链表的一种,它的每个数据结点中都有两个指针,分别指向直接后继和直接前驱.所以,从双向链表中的任意一个结点开始,都 ...

  2. C++安装失败解决办法

    法一:删除注册表中的HKY_LOCAL_MACHINE\\SYSTEM|ControlSet001\\Services\\VSS,卸载重装.法二:点击 setup目录下的 wpie15.exe ..  ...

  3. RHEL7 Ansible

    [root@promote tt]# rpm -iUvh http://dl.Fedoraproject.org/pub/epel/7/x86_64/e/epel-release-7-8.noarch ...

  4. 有关Mysql连接问题

    问题一——Mysql number Error 2003 MySQL连接错误.错误代码10061.10061一般是Mysql服务没启动.或Mysql服务器无法连接 . 在程序栏找到Mysql\Mysq ...

  5. 使用Sass优雅并高效的实现CSS中的垂直水平居中(附带Flex布局,CSS3+SASS完美版)

    实现css水平垂直居中的方法有很多,在这里我简单的说下四种比较常用的方法: 1.使用CSS3中的Flex布局 对于flex,我们要了解的是它是一个display的属性,而且必须要给他的父元素设置fle ...

  6. oracle中的记录类型

    单词RECORD有“记录”的意思,因此RECORD也称为“记录类型”,使用该类型的变量可以存储由多个列值组成的一行数据. 在声明记录类型变量之前,首先需要定义记录类型,然后才可以声明记录类型的变量. ...

  7. ASP.NET操作WMI

    WMI Functions from ASP.NET   Introduction This article demonstrates how to use WMI in ASP.NET to cre ...

  8. mootools和jquery冲突的解决

    mootools-jquery 今天在做EcStore前台的做效果时,由于Jquery的插件比较多,于是就使用了Jquery的插件,但是发现会引起Mootools的冲突. 于是猛找资料,终于找到了,现 ...

  9. VBS基础篇 - 动态数组

    VBS中的动态数组需要使用System.Collections.ArrayList '建立动态数组 Dim Arrl : Set Arrl = CreateObject("System.Co ...

  10. 实现 iframe 子页面调用父页面中的js方法

    父页面:index.html(使用iframe包含子页面child.html) [xhtml] view plaincopyprint? <html> <head> <s ...