E. President and Roads
Time Limit: 20 Sec

Memory Limit: 256 MB

题目连接

http://codeforces.com/contest/567/problem/E

Description

Berland has n cities, the capital is located in city s, and the historic home town of the President is in city t (s ≠ t). The cities are connected by one-way roads, the travel time for each of the road is a positive integer.

Once a year the President visited his historic home town t, for which his motorcade passes along some path from s to t (he always returns on a personal plane). Since the president is a very busy man, he always chooses the path from s to t, along which he will travel the fastest.

The ministry of Roads and Railways wants to learn for each of the road: whether the President will definitely pass through it during his travels, and if not, whether it is possible to repair it so that it would definitely be included in the shortest path from the capital to the historic home town of the President. Obviously, the road can not be repaired so that the travel time on it was less than one. The ministry of Berland, like any other, is interested in maintaining the budget, so it wants to know the minimum cost of repairing the road. Also, it is very fond of accuracy, so it repairs the roads so that the travel time on them is always a positive integer.

Input

The first lines contain four integers nms and t (2 ≤ n ≤ 105; 1 ≤ m ≤ 105; 1 ≤ s, t ≤ n) — the number of cities and roads in Berland, the numbers of the capital and of the Presidents' home town (s ≠ t).

Next m lines contain the roads. Each road is given as a group of three integers ai, bi, li (1 ≤ ai, bi ≤ nai ≠ bi; 1 ≤ li ≤ 106) — the cities that are connected by the i-th road and the time needed to ride along it. The road is directed from city ai to city bi.

The cities are numbered from 1 to n. Each pair of cities can have multiple roads between them. It is guaranteed that there is a path froms to t along the roads.

Output

Print m lines. The i-th line should contain information about the i-th road (the roads are numbered in the order of appearance in the input).

If the president will definitely ride along it during his travels, the line must contain a single word "YES" (without the quotes).

Otherwise, if the i-th road can be repaired so that the travel time on it remains positive and then president will definitely ride along it, print space-separated word "CAN" (without the quotes), and the minimum cost of repairing.

If we can't make the road be such that president will definitely ride along it, print "NO" (without the quotes).

Sample Input

6 7 1 6
1 2 2
1 3 10
2 3 7
2 4 8
3 5 3
4 5 2
5 6 1

Sample Output

YES
CAN 2
CAN 1
CAN 1
CAN 1
CAN 1
YES

HINT

题意

一个有向带重边的图,对于每条边,问你最短路是否必须进过这条边,否则的话,问你最少减少这条边的边权多少,就可以最短路经过这个边了

如果还是不行的话,就输出NO

题解

比较裸的题,跑一发正常的最短路,然后建反向边,跑一发最短路,YES的判断是由带重边的tarjan来求,求桥边就好了

代码来自zenzentorwie

代码

#include <cstdio>
#include <algorithm>
#include <vector>
#include <cstring>
#include <queue>
using namespace std;
const int maxn = ;
#define INF (1LL<<61)
typedef long long ll; struct Dijkstra {
struct node {
ll d;
int u;
bool operator < (const node& b) const {
return d > b.d;
}
node() {}
node(ll _d, int _u): d(_d), u(_u) {}
}; struct Edge {
int from, to, id;
ll dist;
Edge() {}
Edge(int u, int v, ll w) : from(u), to(v), dist(w){}
};
int n, m;
vector<Edge> edges;
vector<int> G[maxn];
bool done[maxn];
ll d[maxn];
int p[maxn]; void init(int n) {
this->n = n;
for (int i = ; i <= n; i++) G[i].clear();
edges.clear();
} void addEdge(int from, int to, ll dist) {
edges.push_back(Edge(from, to, dist));
m = edges.size();
G[from].push_back(m-);
} void dijkstra(int s) {
priority_queue<node> Q;
for (int i = ; i <= n; i++) d[i] = INF;
d[s] = ;
memset(done, , sizeof(done));
Q.push(node(, s));
while (!Q.empty()) {
node x = Q.top(); Q.pop();
int u = x.u;
if (done[u]) continue;
done[u] = true;
for (int i = ; i < G[u].size(); i++) {
Edge& e = edges[G[u][i]];
if (d[e.to] > d[u] + e.dist) {
d[e.to] = d[u] + e.dist;
p[e.to] = G[u][i];
Q.push(node(d[e.to], e.to));
}
}
}
}
} S, T; int dfn[maxn]; // 时间戳
int dfs_clock; // dfs时间变量
int low[maxn]; // u及u的后代在DFS树上能够到达的最早的祖先 struct Edge {
int u, v, w, id;
Edge(int a=, int b=, int w=, int c=) : u(a), v(b), w(w), id(c) {}
} e[*maxn]; vector<Edge> G[maxn];
bool isbridge[*maxn]; int dfs(int u, int la) {
int lowu = dfn[u] = ++dfs_clock; // dfs_clock在调用dfs前要初始化为0
int child = ; // 子节点个数
for (int i = ; i < G[u].size(); i++) {
int v = G[u][i].v;
if (!dfn[v]) { // 未访问过,树边
int lowv = dfs(v, G[u][i].id);
lowu = min(lowu, lowv);
if (lowv > dfn[u]) { // 判断桥
isbridge[G[u][i].id] = ;
}
}
else if (dfn[v] < dfn[u] && G[u][i].id != la) { // 反向边
lowu = min(lowu, dfn[v]);
}
}
low[u] = lowu;
return lowu;
} int ison[*maxn];
int can[*maxn]; int main() {
int n, m, s, t;
scanf("%d%d%d%d", &n, &m, &s, &t);
S.init(n+);
T.init(n+);
int u, v, w;
for (int i = ; i <= m; i++){
scanf("%d%d%d", &u, &v, &w);
e[i] = Edge(u, v, w, i);
S.addEdge(u, v, w);
T.addEdge(v, u, w);
}
S.dijkstra(s);
T.dijkstra(t);
ll ddd = S.d[t];
ll delta;
if (S.d[t] == INF) {
for (int i = ; i <= m; i++) printf("NO\n");
}
else {
for (int i = ; i <= m; i++) {
u = e[i].u;
v = e[i].v;
w = e[i].w;
if (S.d[u] + w == S.d[v] && T.d[v] + w == T.d[u]) {
G[u].push_back(Edge(u, v, w, i));
G[v].push_back(Edge(v, u, w, i));
ison[i] = ;
}
}
dfs(s, -);
for (int i = ; i <= m; i++) {
if (isbridge[i]) {
printf("YES\n");
}
else {
delta = S.d[e[i].u] + T.d[e[i].v] + e[i].w - ddd + ;
if (delta < e[i].w) printf("CAN %I64d\n", delta);
else printf("NO\n");
}
}
} return ;
}

Codeforces Round #Pi (Div. 2) E. President and Roads tarjan+最短路的更多相关文章

  1. Codeforces Round #Pi (Div. 2) E. President and Roads 最短路+桥

    题目链接: http://codeforces.com/contest/567/problem/E 题意: 给你一个带重边的图,求三类边: 在最短路构成的DAG图中,哪些边是必须经过的: 其他的(包括 ...

  2. Codeforces Round #Pi (Div. 2) 567E President and Roads ( dfs and similar, graphs, hashing, shortest paths )

    图给得很良心,一个s到t的有向图,权值至少为1,求出最短路,如果是一定经过的边,输出"YES",如果可以通过修改权值,保证一定经过这条边,输出"CAN",并且输 ...

  3. map Codeforces Round #Pi (Div. 2) C. Geometric Progression

    题目传送门 /* 题意:问选出3个数成等比数列有多少种选法 map:c1记录是第二个数或第三个数的选法,c2表示所有数字出现的次数.别人的代码很短,思维巧妙 */ /***************** ...

  4. 构造 Codeforces Round #Pi (Div. 2) B. Berland National Library

    题目传送门 /* 题意:给出一系列读者出行的记录,+表示一个读者进入,-表示一个读者离开,可能之前已经有读者在图书馆 构造:now记录当前图书馆人数,sz记录最小的容量,in数组标记进去的读者,分情况 ...

  5. Codeforces Round #Pi (Div. 2) ABCDEF已更新

    A. Lineland Mail time limit per test 3 seconds memory limit per test 256 megabytes input standard in ...

  6. Codeforces Round #Pi (Div. 2) D. One-Dimensional Battle Ships set乱搞

    D. One-Dimensional Battle ShipsTime Limit: 2 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/con ...

  7. Codeforces Round #Pi (Div. 2) C. Geometric Progression map

    C. Geometric Progression Time Limit: 2 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/5 ...

  8. Codeforces Round #Pi (Div. 2) B. Berland National Library set

    B. Berland National LibraryTime Limit: 2 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest ...

  9. Codeforces Round #Pi (Div. 2) A. Lineland Mail 水

    A. Lineland MailTime Limit: 2 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/567/proble ...

随机推荐

  1. TCP/IP详解学习笔记(6)-UDP协议

    1.UDP简要介绍 UDP是传输层协议,和TCP协议处于一个分层中,但是与TCP协议不同,UDP协议并不提供超时重传,出错重传等功能,也就是说其是不可靠的协议. 2.UDP协议头 2.1.UDP端口号 ...

  2. 如何解决重启数据库时报ORA-01031无法登数据库

    问题现象:以无用户方式登录数据库,重启或关闭数据时,遇到下列问题: C:\Documents and Settings\xuzhengzhu>sqlplus /nolog SQL*Plus: R ...

  3. [Everyday Mathematics]20150119

    设 $V$ 是 $n$ 维线性空间, $V_1, V_2$ 均为 $V$ 的子空间, 且 $$\bex V_1\subset V_2,\quad \dim V=10,\quad \dim V_1=3, ...

  4. ajax-Ajax试题

    ylbtech-doc:ajax-Ajax试题 Ajax 1.A,Ajax试题返回顶部 001.{Ajax题目}使用Ajax可带来便捷有()(选择3项)      A)减轻服务器的负担      B) ...

  5. mybatis中的变量#与$

    ibatis中使用select top #num# * from tableName出现错误.由于初次用ibatis还不知道在它里边拼写SQL语句的一些规则,导致一些自认为很平常的SQL语句,在它这里 ...

  6. Jedis的Sharded源代码分析

    概述 Jedis是Redis官方推荐的Java客户端,更多Redis的客户端可以参考Redis官网客户端列表.当业务的数据量非常庞大时,需要考虑将数据存储到多个缓存节点上,如何定位数据应该存储的节点, ...

  7. POJ 2728 Desert King 01分数规划,最优比率生成树

    一个完全图,每两个点之间的cost是海拔差距的绝对值,长度是平面欧式距离, 让你找到一棵生成树,使得树边的的cost的和/距离的和,比例最小 然后就是最优比例生成树,也就是01规划裸题 看这一发:ht ...

  8. Java连接Sql Server2008

    参考:http://weistar.iteye.com/blog/1744871 准备工作: 1.下载JDBC驱动包:http://www.microsoft.com/zh-cn/download/d ...

  9. Integer做WeakHashMap的Key应注意的问题

    WeakHashMap使用弱引用来作为Map的Key,利用虚拟机的垃圾回收机制能自动释放Map中没有被使用的条目.但是WeakHashMap释放条目是有条件的:首先条目的Key在系统中没有强引用指向: ...

  10. FS,FT,DFS,DTFT,DFT,FFT的联系和区别

    DCT变换的原理及算法 文库介绍 对于初学数字信号处理(DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理. 学习过<高等数学>和<信号与系统 ...