论文的caffemodel转化为tensorflow模型过程中越坑无数,最后索性直接用caffe提特征。

caffe提取倒数第二层,pool5的输出,fc1000层的输入,2048维的特征

 #coding=utf-8

 import caffe
import os
import numpy as np
import scipy.io as sio #路径设置
OUTPUT='E:/caffemodel/'#输出txt文件夹
root='E:/caffemodel/' #根目录
deploy=root + 'ResNet-101-deploy.prototxt' #deploy文件
caffe_model=root + 'ResNet-101-model.caffemodel' #训练好的 caffemodel
imgroot = 'E:/bjfu-cv-project/img_35/' #随机找的一张待测图片
#labels_filename = 'E:/bjfu-cv-project/CUB_200_2011/CUB_200_2011/classes.txt' #类别名称文件,将数字标签转换回类别名称
net = caffe.Net(deploy,caffe_model,caffe.TEST) #加载model和network
mean_file='mean.npy' #容器初始化
dict = {} fea = []
out_array = np.zeros(shape=(2048,)) #文件读取 count = 0
for root, dirs, files in os.walk(imgroot):
for dir in dirs:
print(dir)
for root, dirs, files in os.walk(imgroot+dir):
i = 0
for img in files:
img = imgroot+dir + '/' + img
#图片预处理设置
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) #设定图片的shape格式(1,3,224,224)
transformer.set_transpose('data', (2,0,1)) #改变维度的顺序,由原始图片(224,224,3)变为(3,224,224)
transformer.set_mean('data', np.load(mean_file).mean(1).mean(1)) #减去均值,前面训练模型时没有减均值,这儿就不用
transformer.set_raw_scale('data', 255) # 缩放到【0,255】之间
transformer.set_channel_swap('data', (2,1,0)) #交换通道,将图片由RGB变为BGR
try:
im=caffe.io.load_image(img) #加载图片
except:
continue
net.blobs['data'].data[...] = transformer.preprocess('data',im) #执行上面设置的图片预处理操作,并将图片载入到blob中 #执行测试
out = net.forward()
fea.append(net.blobs['pool5'].data) # 提取某层数据(特征)
print(dir, i, img)
out_array = np.column_stack((fea[i][0,:,0,0], out_array))
i = i + 1
#结果输出
dict['array'] = out_array
save_matFile = 'fearture_of_35.mat'
sio.savemat(save_matFile, dict)

均值文件ResNet_mean.binaryproto转化mean.npy

 #coding=utf-8
import caffe
import numpy as np MEAN_PROTO_PATH = 'ResNet_mean.binaryproto' # 待转换的pb格式图像均值文件路径 MEAN_NPY_PATH = 'mean.npy' # 转换后的numpy格式图像均值文件路径 blob = caffe.proto.caffe_pb2.BlobProto() # 创建protobuf blob
data = open(MEAN_PROTO_PATH, 'rb' ).read() # 读入mean.binaryproto文件内容
blob.ParseFromString(data) # 解析文件内容到blob array = np.array(caffe.io.blobproto_to_array(blob))# 将blob中的均值转换成numpy格式,array的shape (mean_number,channel, hight, width)
mean_npy = array[0] # 一个array中可以有多组均值存在,故需要通过下标选择其中一组均值
np.save(MEAN_NPY_PATH ,mean_npy)

caffe的python接口提取resnet101某层特征的更多相关文章

  1. caffe的python接口学习(1):生成配置文件

    caffe是C++语言写的,可能很多人不太熟悉,因此想用更简单的脚本语言来实现.caffe提供matlab接口和python接口,这两种语言就非常简单,而且非常容易进行可视化,使得学习更加快速,理解更 ...

  2. 机器学习caffe环境搭建——redhat7.1和caffe的python接口编译

    相信看这篇文章的都知道caffe是干嘛的了,无非就是深度学习.神经网络.计算机视觉.人工智能这些,这个我就不多介绍了,下面说说我的安装过程即遇到的问题,当然还有解决方法. 说下我的环境:1>虚拟 ...

  3. caffe中python接口的使用

    下面是基于我自己的接口,我是用来分类一维数据的,可能不具通用性: (前提,你已经编译了caffe的python的接口) 添加 caffe塻块的搜索路径,当我们import caffe时,可以找到. 对 ...

  4. 【caffe】Caffe的Python接口-官方教程-00-classification-详细说明(含代码)

    00-classification 主要讲的是如何利用caffenet(与Alex-net稍稍不同的模型)对一张图片进行分类(基于imagenet的1000个类别) 先说说教程到底在哪(反正我是找了半 ...

  5. caffe的python接口学习(7):绘制loss和accuracy曲线

    使用python接口来运行caffe程序,主要的原因是python非常容易可视化.所以不推荐大家在命令行下面运行python程序.如果非要在命令行下面运行,还不如直接用 c++算了. 推荐使用jupy ...

  6. Windows+Caffe+VS2013+python接口配置过程

    前段时间在笔记本上配置了Caffe框架,中间过程曲曲折折,但由于懒没有将详细过程总结下来,这两天又在一台配置较高的台式机上配置了Caffe,配置时便非常后悔当初没有写到博客中去,现已配置好Caffe, ...

  7. ubuntu16.04 安装caffe以及python接口

    http://blog.csdn.net/qq_25073253/article/details/72571714http://blog.csdn.net/greed7480/article/deta ...

  8. Caffe: Caffe的Python接口

    官方参考:http://caffe.berkeleyvision.org/installation.html 官方介绍是这样的: Python The main requirements are nu ...

  9. caffe的python接口学习(8):caffemodel中的参数及特征的抽取

    如果用公式  y=f(wx+b) 来表示整个运算过程的话,那么w和b就是我们需要训练的东西,w称为权值,在cnn中也可以叫做卷积核(filter),b是偏置项.f是激活函数,有sigmoid.relu ...

随机推荐

  1. SQL中如何避免书签查找

    1.使用聚集索引 对于聚集索引,索引的叶子页面和表的数据页面相同.因此,当读取聚集索引键列的值时,数据引擎可以读取其他列的值而不需要任何导航.例如前面的区间数据查询的操作,SQLServer通过B树结 ...

  2. weka属性选择使用

    醉了--- package edu.dcy.weka; import java.io.FileWriter; import java.util.ArrayList; import java.util. ...

  3. 域名设置A记录或CNAME记录,但无法被解析,可能是因为状态为:clientHold

    解决方案: 访问https://whois.aliyun.com/查询域名状态是否为“注册商禁止解析”: 若是,联系注册商根据对方要求进行操作以便解除. https://icann.org/epp#c ...

  4. 在 Windows下用 Visual Studio 编译 OpenSSL 1.1.0

    到OpenSSL官方网站下载OpenSSL源代码包 1.下载 openssl-1.1.0.tar.gz 2.安装 ActivePerl, 可以到http://www.activestate.com/a ...

  5. 【BZOJ1029】[JSOI2007] 建筑抢修(堆优化贪心)

    点此看题面 大致题意: 有N个受到严重损伤的建筑,对于每个建筑,修好它需要\(T1\)秒,且必须在\(T2\)秒之前修完(\(T1\)与\(T2\)不是固定值),问你最多能修好几个建筑. 题解 一看到 ...

  6. 2017.12.20 Java中的 IO/XML学习总结 File类详细

    IO / XML 一.File类 1.定义/概念 Java是面向对象的语言,要想把数据存到文件中,就必须要有一个对象表示这个文件.File类的作用就是代表一个特定的文件或目录,并提供了若干方法对这些文 ...

  7. javaweb基础(33)_jdbc的crud操作

    一.statement对象介绍 Jdbc中的statement对象用于向数据库发送SQL语句,想完成对数据库的增删改查,只需要通过这个对象向数据库发送增删改查语句即可. Statement对象的exe ...

  8. Activiti学习记录(一)

    1.工作流的概念 工作流(Workflow),就是“业务过程的部分或整体在计算机应用环境下的自动化”,它主要解决的是“使在多个参与者之间按照某种预定义的规则传递文档.信息或任务的过程自动进行,从而实现 ...

  9. 适配iOS10和Xcode8

    1.权限设置 iOS10,访问系统权限需要在info.plist中注册,否则直接crash! 注意,Value值不可为空,否则会被Appstore拒掉! 2.Notification,学习资料 喵神总 ...

  10. SAP事件 Event Flow(转载)

    1 报表过程事件 报表过程事件是在报表运行过程中由系统自动控制,按照一定次序被触发的事件,其目的是从数据库中选择数据并整理,准备进行列表输出.这些事件从报表程序启动开始就被系统顺序触发,现分述如下: ...