hdu 3081 hdu 3277 hdu 3416 Marriage Match II III IV //最大流的灵活运用
3081 题意:
n个女孩选择没有与自己吵过架的男孩有连边(自己的朋友也算,并查集处理),2分图,有些边,求有几种完美匹配(每次匹配每个点都不重复匹配)
我是建二分图后,每次增广一单位,(一次完美匹配),再修改起点还有终点的边流量,继续增广,直到达不到完美匹配为止。网上很多是用二分做的,我觉得没必要。。。(网上传播跟风真严重。。。很多人都不是真正懂最大流算法的。。。)
3277 :
再附加一条件,每个女孩可以最多与k个自己不喜欢的男孩。求有几种完美匹配(同上)。
我觉得:求出上题答案,直接ans+k即可(大于n取n),因为,最多是n种匹配。在限制的基础上,求出最大值,然后余下的k种,是随意连边的,总有完美匹配方案吧?当然不大于n,我是这样想的。不知道为什么WA。。。。感觉没问题。。。网上大多是拆点,连自己不喜欢的边,跑最大流(盲目跟风解法,不经思考的人很厌恶。。。吐槽几句:当我提出新解法的时候,有“牛”半秒内直接说显然错误。。然后又半天不解释。说:“二分+并查集+拆点+最大流,自己理解”....╮(╯▽╰)╭...呵呵)
3416: 求边不可重复最短路条数。比较简单。跑最短路后,类似dp找出是最短路的边,添加流量为1,直接最大流。
代码3081:
#include<iostream>
#include<queue>
#include<cstdio>
#include<cstring>
#include<set>
#include<vector>
using namespace std;
const int inf=0x3f3f3f3f;
const int maxv=210,maxe=40000;
int nume=0;int head[maxv];int e[maxe][3];
void inline adde(int i,int j,int c)
{
e[nume][0]=j;e[nume][1]=head[i];head[i]=nume;
e[nume++][2]=c;
e[nume][0]=i;e[nume][1]=head[j];head[j]=nume;
e[nume++][2]=0;
}
int ss,tt,n,m,fr;
int vis[maxv];int lev[maxv];
bool bfs()
{
for(int i=0;i<maxv;i++)
vis[i]=lev[i]=0;
queue<int>q;
q.push(ss);
vis[ss]=1;
while(!q.empty())
{
int cur=q.front();
q.pop();
for(int i=head[cur];i!=-1;i=e[i][1])
{
int v=e[i][0];
if(!vis[v]&&e[i][2]>0)
{
lev[v]=lev[cur]+1;
vis[v]=1;
q.push(v);
}
}
}
return vis[tt];
}
int dfs(int u,int minf)
{
if(u==tt||minf==0)return minf;
int sumf=0,f;
for(int i=head[u];i!=-1&&minf;i=e[i][1])
{
int v=e[i][0];
if(lev[v]==lev[u]+1&&e[i][2]>0)
{
f=dfs(v,minf<e[i][2]?minf:e[i][2]);
e[i][2]-=f;e[i^1][2]+=f;
sumf+=f;minf-=f;
}
}
if(!sumf) lev[u]=-1;
return sumf;
}
int dinic()
{
int sum=0;
while(bfs())sum+=dfs(ss,inf);
return sum;
};
int mapp[maxv][maxv];
int fa[maxv+1];
vector<set<int> >tos(maxv);
int find(int x)
{
if(x==fa[x])return x;
else fa[x]=find(fa[x]);
return fa[x];
}
void read_build()
{
int aa,bb;
for(int j=0;j<m;j++)
{
scanf("%d%d",&aa,&bb);
adde(aa,bb+n,1);
mapp[aa][bb]=1;
}
for(int i=0;i<fr;i++)
{
scanf("%d%d",&aa,&bb); int xx=find(aa);
int yy=find(bb);
if(xx!=yy)
{
fa[xx]=yy;
}
}
for(int i=1;i<=n;i++)
{
int tx=find(i);
for(int es=head[i];es!=-1;es=e[es][1])
{
if(es%2==0)
tos[tx].insert(e[es][0]-n);
}
}
for(int i=1;i<=n;i++)
{
int tx=find(i);
set<int>::iterator it=tos[tx].begin();
for(;it!=tos[tx].end();it++)
{
if(mapp[i][*it]==0)
{
mapp[i][*it]=1;
adde(i,(*it)+n,1);
}
}
}
for(int i=1;i<=n;i++)
{
adde(ss,i,1);
adde(i+n,tt,1);
}
/* for(int i=0;i<=tt;i++)
for(int j=head[i];j!=-1;j=e[j][1])
{
printf("%d->%d:%d\n",i,e[j][0],e[j][2]);
}*/
}
void init()
{
nume=0;
memset(mapp,0,sizeof(mapp));
ss=0;tt=2*n+1;
for(int i=0;i<maxv;i++)
{
head[i]=-1;fa[i]=i;tos[i].clear();
}
}
int main()
{
int T;
scanf("%d",&T);
for(int ii=1;ii<=T;ii++)
{
int tx;
scanf("%d%d%d",&n,&m,&fr);
init();
read_build();
int ans=0;
while(dinic()==n)
{
ans++;
for(int i=head[0];i!=-1;i=e[i][1])
{
e[i][2]=1;
e[i^1][2]=0;
}
for(int i=head[tt];i!=-1;i=e[i][1])
{
e[i^1][2]=1;
e[i][2]=0;
}
}
printf("%d\n",ans);
}
return 0;
}
hdu 3081 hdu 3277 hdu 3416 Marriage Match II III IV //最大流的灵活运用的更多相关文章
- hdu 3081 hdu 3277 hdu 3416 Marriage Match II III IV //灵活运用最大流量
3081 意甲冠军: n女生选择不吵架,他甚至男孩边(他的朋友也算.并为您收集过程).2二分图,一些副作用,有几个追求完美搭配(每场比赛没有重复的每一个点的比赛) 后.每次增广一单位,(一次完美匹配) ...
- 【HDU3081】Marriage Match II (二分+最大流)
Description Presumably, you all have known the question of stable marriage match. A girl will choose ...
- HDU 3081 Marriage Match II(二分法+最大流量)
HDU 3081 Marriage Match II pid=3081" target="_blank" style="">题目链接 题意:n个 ...
- HDU 3416 Marriage Match IV (最短路径,网络流,最大流)
HDU 3416 Marriage Match IV (最短路径,网络流,最大流) Description Do not sincere non-interference. Like that sho ...
- HDU 3081 Marriage Match II (网络流,最大流,二分,并查集)
HDU 3081 Marriage Match II (网络流,最大流,二分,并查集) Description Presumably, you all have known the question ...
- HDU 3081 Marriage Match II (二分图,并查集)
HDU 3081 Marriage Match II (二分图,并查集) Description Presumably, you all have known the question of stab ...
- hdu 3416 Marriage Match IV (最短路+最大流)
hdu 3416 Marriage Match IV Description Do not sincere non-interference. Like that show, now starvae ...
- HDU 3081 Marriage Match II 二分 + 网络流
Marriage Match II 题意:有n个男生,n个女生,现在有 f 条男生女生是朋友的关系, 现在有 m 条女生女生是朋友的关系, 朋友的朋友是朋友,现在进行 k 轮游戏,每轮游戏都要男生和女 ...
- Marriage Match II(二分+并查集+最大流,好题)
Marriage Match II http://acm.hdu.edu.cn/showproblem.php?pid=3081 Time Limit: 2000/1000 MS (Java/Othe ...
随机推荐
- vsftpd服务安装与虚拟用户配置
vsftpd的全名是“Very secure FTP Daemon” 一.安装vsftpd安装db4-util用于生成认证文件 yum -y install db4-utils 安装vsftpd yu ...
- Python爬虫,爬取实验楼全部课程
目的: 使用requests库以及xpath解析进行实验楼所有课程,存入MySQL数据 库中. 准备工作: 首先安装,requests库,lxml库,以及peewee库.在命令行模式,使用以下命令. ...
- RMQ原理及实现
RMQ(Range Minimum/Maximum Query),区间最值查询问题,是指:对于长度为n的数列A,回答若干次询问RMQ(i,j),返回数列A中下标在区间[i,j]中的最小/大值. 这里介 ...
- Nordic Collegiate Programming Contest 2015 G. Goblin Garden Guards
In an unprecedented turn of events, goblins recently launched an invasion against the Nedewsian city ...
- Mysql源码编译安装&主从复制
一)camke源码编译安装mysql 1)创建软件安装目录software [root@master software]# ls cmake-2.8.8.tar.gz mysql-5.5.32.tar ...
- Python虚拟机之for循环控制流(二)
Python虚拟机中的for循环控制流 在Python虚拟机之if控制流(一)这一章中,我们了解if控制流的字节码实现,在if控制结构中,虽然Python虚拟机会在不同的分支摇摆,但大体还是向前执行, ...
- luogu3193 [HNOI2008]GT考试
there #include <iostream> #include <cstdio> using namespace std; int n, m, mod, nxt[25], ...
- asp.net多线程在web页面中简单使用
需求:一个web页面 default.aspx 里面有两个控件GridView1,GridView2,通过两个线程分别加载绑定数据. 绑定GridView1:void BindCategory() ...
- 遍历Request.QueryString
Request.QueryString 返回的是 NameValueCollection, 而NameValueCollection实现了IEnumerable的GetEnumerator方法,只是G ...
- Selenium WebDriver-获取与切换浏览器窗口的句柄
通过selenium webdriver去切换浏览器的窗口,需要通过句柄,具体代码如下: #encoding=utf-8 import unittest import time import char ...