3081 题意:

n个女孩选择没有与自己吵过架的男孩有连边(自己的朋友也算,并查集处理),2分图,有些边,求有几种完美匹配(每次匹配每个点都不重复匹配)

我是建二分图后,每次增广一单位,(一次完美匹配),再修改起点还有终点的边流量,继续增广,直到达不到完美匹配为止。网上很多是用二分做的,我觉得没必要。。。(网上传播跟风真严重。。。很多人都不是真正懂最大流算法的。。。)

3277 :

再附加一条件,每个女孩可以最多与k个自己不喜欢的男孩。求有几种完美匹配(同上)。

我觉得:求出上题答案,直接ans+k即可(大于n取n),因为,最多是n种匹配。在限制的基础上,求出最大值,然后余下的k种,是随意连边的,总有完美匹配方案吧?当然不大于n,我是这样想的。不知道为什么WA。。。。感觉没问题。。。网上大多是拆点,连自己不喜欢的边,跑最大流(盲目跟风解法,不经思考的人很厌恶。。。吐槽几句:当我提出新解法的时候,有“牛”半秒内直接说显然错误。。然后又半天不解释。说:“二分+并查集+拆点+最大流,自己理解”....╮(╯▽╰)╭...呵呵)

3416: 求边不可重复最短路条数。比较简单。跑最短路后,类似dp找出是最短路的边,添加流量为1,直接最大流。

代码3081:

#include<iostream>
#include<queue>
#include<cstdio>
#include<cstring>
#include<set>
#include<vector>
using namespace std;
const int inf=0x3f3f3f3f;
const int maxv=210,maxe=40000;
int nume=0;int head[maxv];int e[maxe][3];
void inline adde(int i,int j,int c)
{
e[nume][0]=j;e[nume][1]=head[i];head[i]=nume;
e[nume++][2]=c;
e[nume][0]=i;e[nume][1]=head[j];head[j]=nume;
e[nume++][2]=0;
}
int ss,tt,n,m,fr;
int vis[maxv];int lev[maxv];
bool bfs()
{
for(int i=0;i<maxv;i++)
vis[i]=lev[i]=0;
queue<int>q;
q.push(ss);
vis[ss]=1;
while(!q.empty())
{
int cur=q.front();
q.pop();
for(int i=head[cur];i!=-1;i=e[i][1])
{
int v=e[i][0];
if(!vis[v]&&e[i][2]>0)
{
lev[v]=lev[cur]+1;
vis[v]=1;
q.push(v);
}
}
}
return vis[tt];
}
int dfs(int u,int minf)
{
if(u==tt||minf==0)return minf;
int sumf=0,f;
for(int i=head[u];i!=-1&&minf;i=e[i][1])
{
int v=e[i][0];
if(lev[v]==lev[u]+1&&e[i][2]>0)
{
f=dfs(v,minf<e[i][2]?minf:e[i][2]);
e[i][2]-=f;e[i^1][2]+=f;
sumf+=f;minf-=f;
}
}
if(!sumf) lev[u]=-1;
return sumf;
}
int dinic()
{
int sum=0;
while(bfs())sum+=dfs(ss,inf);
return sum;
};
int mapp[maxv][maxv];
int fa[maxv+1];
vector<set<int> >tos(maxv);
int find(int x)
{
if(x==fa[x])return x;
else fa[x]=find(fa[x]);
return fa[x];
}
void read_build()
{
int aa,bb;
for(int j=0;j<m;j++)
{
scanf("%d%d",&aa,&bb);
adde(aa,bb+n,1);
mapp[aa][bb]=1;
}
for(int i=0;i<fr;i++)
{
scanf("%d%d",&aa,&bb); int xx=find(aa);
int yy=find(bb);
if(xx!=yy)
{
fa[xx]=yy;
}
}
for(int i=1;i<=n;i++)
{
int tx=find(i);
for(int es=head[i];es!=-1;es=e[es][1])
{
if(es%2==0)
tos[tx].insert(e[es][0]-n);
}
}
for(int i=1;i<=n;i++)
{
int tx=find(i);
set<int>::iterator it=tos[tx].begin();
for(;it!=tos[tx].end();it++)
{
if(mapp[i][*it]==0)
{
mapp[i][*it]=1;
adde(i,(*it)+n,1);
}
}
}
for(int i=1;i<=n;i++)
{
adde(ss,i,1);
adde(i+n,tt,1);
}
/* for(int i=0;i<=tt;i++)
for(int j=head[i];j!=-1;j=e[j][1])
{
printf("%d->%d:%d\n",i,e[j][0],e[j][2]);
}*/
}
void init()
{
nume=0;
memset(mapp,0,sizeof(mapp));
ss=0;tt=2*n+1;
for(int i=0;i<maxv;i++)
{
head[i]=-1;fa[i]=i;tos[i].clear();
}
}
int main()
{
int T;
scanf("%d",&T);
for(int ii=1;ii<=T;ii++)
{
int tx;
scanf("%d%d%d",&n,&m,&fr);
init();
read_build();
int ans=0;
while(dinic()==n)
{
ans++;
for(int i=head[0];i!=-1;i=e[i][1])
{
e[i][2]=1;
e[i^1][2]=0;
}
for(int i=head[tt];i!=-1;i=e[i][1])
{
e[i^1][2]=1;
e[i][2]=0;
}
}
printf("%d\n",ans);
}
return 0;
}

hdu 3081 hdu 3277 hdu 3416 Marriage Match II III IV //最大流的灵活运用的更多相关文章

  1. hdu 3081 hdu 3277 hdu 3416 Marriage Match II III IV //灵活运用最大流量

    3081 意甲冠军: n女生选择不吵架,他甚至男孩边(他的朋友也算.并为您收集过程).2二分图,一些副作用,有几个追求完美搭配(每场比赛没有重复的每一个点的比赛) 后.每次增广一单位,(一次完美匹配) ...

  2. 【HDU3081】Marriage Match II (二分+最大流)

    Description Presumably, you all have known the question of stable marriage match. A girl will choose ...

  3. HDU 3081 Marriage Match II(二分法+最大流量)

    HDU 3081 Marriage Match II pid=3081" target="_blank" style="">题目链接 题意:n个 ...

  4. HDU 3416 Marriage Match IV (最短路径,网络流,最大流)

    HDU 3416 Marriage Match IV (最短路径,网络流,最大流) Description Do not sincere non-interference. Like that sho ...

  5. HDU 3081 Marriage Match II (网络流,最大流,二分,并查集)

    HDU 3081 Marriage Match II (网络流,最大流,二分,并查集) Description Presumably, you all have known the question ...

  6. HDU 3081 Marriage Match II (二分图,并查集)

    HDU 3081 Marriage Match II (二分图,并查集) Description Presumably, you all have known the question of stab ...

  7. hdu 3416 Marriage Match IV (最短路+最大流)

    hdu 3416 Marriage Match IV Description Do not sincere non-interference. Like that show, now starvae ...

  8. HDU 3081 Marriage Match II 二分 + 网络流

    Marriage Match II 题意:有n个男生,n个女生,现在有 f 条男生女生是朋友的关系, 现在有 m 条女生女生是朋友的关系, 朋友的朋友是朋友,现在进行 k 轮游戏,每轮游戏都要男生和女 ...

  9. Marriage Match II(二分+并查集+最大流,好题)

    Marriage Match II http://acm.hdu.edu.cn/showproblem.php?pid=3081 Time Limit: 2000/1000 MS (Java/Othe ...

随机推荐

  1. CentOS7下systemd

    配置文件: /usr/lib/systemd/system:每个服务最主要的启动脚本设置,类似于之前的/etc/init.d/ /run/systemd/system:系统执行过程中所产生的服务脚本, ...

  2. thinkcmf5 模板版变量的加载过程 和 新增网站配置项怎么全局使用

    1.模板全局配置是怎么加载的 在 HomeBaseController.php 的 fech方法 $more     = $this->getThemeFileMore($template); ...

  3. 序列内置方法详解(string/list/tuple)

    一.常用方法集合 1.1.string,字符串常用方法 以下举例是python2.7测试: 函数名称 作用 举例 str.capitalize() 字符串第一个字符如果是字母,则把字母替换为大写字母. ...

  4. 【linux】【指令集】查看是否打开selinux

    > getenforce selinux相关原理资料参考 <鸟哥的linux私房菜>  http://cn.linux.vbird.org/linux_server/0210netw ...

  5. 2018 Python开发者大调查:Python和JavaScript最配?

    在2018年秋季,Python软件基金会与JetBrains发起了年度Python开发者调查. 报告的目的是寻找Python领域的新趋势,帮助开发者深入了解2018年Python开发者的现状. 该报告 ...

  6. LeetCode(275)H-Index II

    题目 Follow up for H-Index: What if the citations array is sorted in ascending order? Could you optimi ...

  7. Artwork Gym - 101550A 离线并查集

    题目:题目链接 思路:每个空白区域当作一个并查集,因为正着使用并查集分割的话dfs会爆栈,判断过于复杂也会导致超时,我们采用离线反向操作,先全部涂好,然后把黑格子逐步涂白,我们把每个空白区域当作一个并 ...

  8. HDU 1533 二分图最小权匹配 Going Home

    带权二分图匹配,把距离当做权值,因为是最小匹配,所以把距离的相反数当做权值求最大匹配. 最后再把答案取一下反即可. #include <iostream> #include <cst ...

  9. [转] 对 forEach(),map(),filter(),reduce(),find(),every(),some()的理解

    1.forEach() 用法:array.forEach(function(item,index){}) 没有返回值,只是单纯的遍历 2.map() 用法:array.map(function(ite ...

  10. Linux内存cache/buffer剖析

    查询linux系统中空闲内存/内存使用状态查看/剩余内存查看 如何计算内存的使用量及空闲量 物理已用内存 = 实际已用内存 - 缓冲 - 缓存              =  24752  - 283 ...