当Linux创建一个进程时,会自动创建3个文件描述符0,1,2,分别对应标准输入,标准输出,错误输出。C库中与文件描述符对应的是文件指针。查看C库头文件stdio.h中的源码

  1. typedef struct _IO_FILE FILE; //文件流类型
  2. extern struct _IO_FILE *stdin; /* 标准输入流 */
  3. extern struct _IO_FILE *stdout; /* 标准输出流 */
  4. extern struct _IO_FILE *stderr; /* 错误流 */
  5. #ifdef __STDC__
  6. /* C89/C99 say they're macros. Make them happy. */
  7. #define stdin stdin
  8. #define stdout stdout
  9. #define stderr stderr
  10. #endif
从上面源码看stdin,stdout,stderr是文件流指针,看看stdin,stdout,stderr是如何定义的
  1. _IO_FILE *stdin = (FILE *) &_IO_2_1_stdin_;
  2. _IO_FILE *stdout = (FILE *) &_IO_2_1_stdout_;
  3. _IO_FILE *stderr = (FILE *) &_IO_2_1_stderr_;
继续查看_IO_2_1_stdin_的定义
  1. DEF_STDFILE(_IO_2_1_stdin_, 0, 0, _IO_NO_WRITES);
  2. DEF_STDFILE(_IO_2_1_stdout_, 1, &_IO_2_1_stdin_, _IO_NO_READS);
  3. DEF_STDFILE(_IO_2_1_stderr_, 2, &_IO_2_1_stdout_, _IO_NO_READS+_IO_UNBUFFERED);
DEF_STDFILE是一个宏定义,用于初始化C库中的FILE结构,_IO_2_1_stdin__IO_2_1_stdout__IO_2_1_stderr_分别用于0,1,2的初始化,这样c库的文件指针跟系统的文件描述符关联起来了,另外注意后面的标志位,stdin是不可写,stdout不可读,stderr不可读不可写没缓冲
通过上面分析可以得知stdin,stdout,stderr是file类的文件指针


I/O缓冲引出的有趣问题。
    C库的I/O接口对文件I/O进行了封装为了提高性能,其引入了缓存机制,共有3种缓存机制:全缓存,行缓存及无缓存
    全缓存一般用于访问真正的磁盘文件。C库为文件访问申请一块内存,只有当文件内容将缓存填满或者执行flush时,C库才会将缓存内容写入到内核中。
    行缓存一般用于访问终端,当遇到一个换行符时,就会引发真正的I/O操作。
    无缓存那就不用多说了


C库的fopen用于打开文件,其内部实现必然要使用open系统调用。那么fopen的各个标志位又对应open的哪些标志位呢?请看表2-1。
 
下面进入glibc的源码,查看函数_IO_new_file_fopen来验证上面的结论
  1. _IO_FILE *
  2. _IO_new_file_fopen (fp, filename, mode, is32not64)
  3. _IO_FILE *fp;
  4. const char *filename;
  5. const char *mode;
  6. int is32not64;
  7. {
  8. int oflags = 0, omode;
  9. int read_write;
  10. int oprot = 0666;
  11. int i;
  12. _IO_FILE *result;
  13. #ifdef _LIBC
  14. const char *cs;
  15. const char *last_recognized;
  16. #endif
  17. if (_IO_file_is_open (fp))
  18. return 0;
  19. switch (*mode)
  20. {
  21. case 'r':
  22. omode = O_RDONLY;
  23. read_write = _IO_NO_WRITES;
  24. break;
  25. case 'w':
  26. omode = O_WRONLY;
  27. oflags = O_CREAT|O_TRUNC;
  28. read_write = _IO_NO_READS;
  29. break;
  30. case 'a':
  31. omode = O_WRONLY;
  32. oflags = O_CREAT|O_APPEND;
  33. read_write = _IO_NO_READS|_IO_IS_APPENDING;
  34. break;
  35. default:
  36. __set_errno (EINVAL);
  37. return NULL;
  38. }
  39. #ifdef _LIBC
  40. last_recognized = mode;
  41. #endif
  42. for (i = 1; i < 7; ++i)
  43. {
  44. switch (*++mode)
  45. {
  46. case '\0':
  47. break;
  48. case '+':
  49. omode = O_RDWR;
  50. read_write &= _IO_IS_APPENDING;
  51. #ifdef _LIBC
  52. last_recognized = mode;
  53. #endif
  54. continue;
  55. case 'x':
  56. oflags |= O_EXCL;
  57. #ifdef _LIBC
  58. last_recognized = mode;
  59. #endif
  60. continue;
  61. case 'b':
  62. #ifdef _LIBC
  63. last_recognized = mode;
  64. #endif
  65. continue;
  66. case 'm':
  67. fp->_flags2 |= _IO_FLAGS2_MMAP;
  68. continue;
  69. case 'c':
  70. fp->_flags2 |= _IO_FLAGS2_NOTCANCEL;
  71. continue;
  72. case 'e':
  73. #ifdef O_CLOEXEC
  74. oflags |= O_CLOEXEC;
  75. #endif
  76. fp->_flags2 |= _IO_FLAGS2_CLOEXEC;
  77. continue;
  78. default:
  79. /* Ignore. */
  80. continue;
  81. }
  82. break;
  83. }
  84. result = _IO_file_open (fp, filename, omode|oflags, oprot, read_write,
  85. is32not64);


fdopen与fileno
Linux提供了文件描述符,而C库又提供了文件流。在平时的工作中,有时候需要在两者之间进行切换,因此C库提供了两个API:
  1. #include <stdio.h>
  2. FILE *fdopen(int fd, const char *mode);
  3. int fileno(FILE *stream);
fdopen用于从文件描述fd中生成一个file指针,而fileno则用于从文件指针中得到对应的文件描述符

查看fdopen的实现,其基本工作是创建一个新的文件流FILE,并建立文件流FILE与描述符的对应关系。我们以fileno的简单实现,来了解文件流FILE与文件描述符fd的关系。——因为该函数代码较长,在此就不罗列C库的代码了。代码如下:
  1. int fileno (_IO_FILE* fp)
  2. {
  3. CHECK_FILE (fp, EOF);
  4. if (!(fp->_flags & _IO_IS_FILEBUF) || _IO_fileno (fp) < 0)
  5. {
  6. __set_errno (EBADF);
  7. return -1;
  8. }
  9. return _IO_fileno (fp);
  10. }
  11. #define _IO_fileno(FP) ((FP)->_fileno)
从fileno的实现基本上就可以得知文件流与文件描述符的对应关系。文件流FILE保存了文件描述符的值。当从文件流转换到文件描述符时,可以直接通过当前FILE保存的值_fileno得到fd。而从文件描述符转换到文件流时,C库返回的都是一个重新申请的文件流FILE,且这个FILE的_fileno保存了文件描述符。
因此无论是fdopen还是fileno,关闭文件时,都要使用fclose来关闭文件,而不是用close。因为只有采用此方式,fclose作为C库函数,才会释放文件流FILE占用的内存。








Linux内核解析之标准I/O库的更多相关文章

  1. Linux内核解析

     一.Linux内核  一个完整可用的操作系统主要由 4 部分组成:硬件.操作系统内核.操作系统服务和用户应用程序,如下图所示:             用户应用程序:是指那些自处理程序. Inter ...

  2. Linux内核解析:进程间通信:管道

    管道的定义管道的用途管道的操作管道非法read与write内核实现解析管道通信原理及其亲戚通信解析父子进程通信解析亲缘关系的进程管道通信解析管道的注意事项及其性质管道有以下三条性质shell管道的实现 ...

  3. 决Ubuntu使用`make menuconfig`配置Linux 内核时,出现缺少'ncurses-devel'库支持。

    *** Unable to find the ncurses libraries or the *** required header files. *** 'make menuconfig' req ...

  4. linux内核系统调用和标准C库函数的关系分析

    http://blog.csdn.net/skyflying2012/article/details/10044343

  5. linux内核编程笔记【原创】

    以下为本人学习笔记,如有转载请注明出处,谢谢 DEFINE_MUTEX(buzzer_mutex); mutex_lock(&buzzer_mutex); mutex_unlock(& ...

  6. 《LINUX内核设计与实现》第三周读书笔记——第一二章

    <Linux内核设计与实现>读书笔记--第一二章 20135301张忻 估算学习时间:共2小时 读书:1.5 代码:0 作业:0 博客:0.5 实际学习时间:共2.5小时 读书:2.0 代 ...

  7. 《Linux内核设计与实现》 第三周 读书笔记

    第一章 Linux内核简介 1. Unix的历史 Unⅸ虽然已经使用了40年,但计算机科学家仍然认为它是现存操作系统中最强大和最优秀的系统. Unix强大的根本原因: 简洁 在Unix中所有的东西都被 ...

  8. 《Linux内核设计与实现》读书笔记——第一二章

    <Linux内核设计与实现>读书笔记——第一二章 第一章 Linux内核简介 1.1 Unix的历史 简洁:仅提供系统调用并有一个非常明确的设计目的. 抽象:Unix中绝大部分东西都被当做 ...

  9. Linux内核剖析 之 进程简单介绍

    1.概念 1.1  什么是进程?     进程是程序运行的一个实例.能够看作充分描写叙述程序已经运行到何种程度的数据结构的汇集.     从内核观点看.进程的目的就是担当分配系统资源(CPU时间,内存 ...

随机推荐

  1. 学习笔记(三): Generalization/Overfitting/Validation

      目录 Generalization: Peril of Overfitting Low loss, but still a bad model? How Do We Know If Our Mod ...

  2. skimage学习(一)

    skimage即是Scikit-Image.基于python脚本语言开发的数字图片处理包 skimage包由许多的子模块组成,各个子模块提供不同的功能.主要子模块列表如下: data子模块学习 导入d ...

  3. Voyager的安装及配置文件

    使用代理服务器安装laravel http_proxy=http://localhost:1080 composer create-project --prefer-dist laravel/lara ...

  4. Choose unique values for the 'webAppRootKey' context-param in your web.xml files! 错误的解决

    大意是Log4jConfigListener在获取webapp.root值时,被后一context的值替换掉了,所以要在各个项目的web.xml中配置不同的webAppRootKey值,随即在其中一个 ...

  5. 【mysql】【转发】[Err]1267 - Illegal mix of collations(utf8_general_ci,IMPLICIT) and (utf8_unicode_ci,I

    [Err]1267 - Illegal mix of collations(utf8_general_ci,IMPLICIT) and (utf8_unicode_ci,IMPLICIT) for o ...

  6. CF1029C Maximal Intersection

    https://www.luogu.org/problem/show?pid=CF1029C #include<bits/stdc++.h> using namespace std ; # ...

  7. PTA 7-1 银行业务队列简单模拟

    用链表实现队列操作,代码如下: #include <iostream> #include <cstdio> #include <algorithm> #includ ...

  8. [转] babel-present-env 与 babel-polyfill 学习总结

    babelrc 配置文件 { "presets": [ [ "env", { "modules": false, "useBuil ...

  9. 1px的实现

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  10. 1.ABP使用boilerplate模版创建解决方案

    1.到ABP框架的官网(http://www.aspnetboilerplate.com/),自动生成一个解决方案 每步注解: 第一步:AngularJS是一款比较火的SPA(Single Page ...