51 Nod 1238 最小公倍数之和 V3 杜教筛
题目链接:http://www.51nod.com/Challenge/Problem.html#!#problemId=1238
题意:求$\sum_{i=1}^{n}\sum_{j=1}^{n}lcm(i,j)=\sum_{i=1}^{n}\sum_{j=1}^{n}{\frac{i*j}{gcd(i,j)}}$,$1\leq{n}\leq10^{10}$.
知识提要:小于等于n中与n互质的数总和为$\sum_{i=1}^{n}[(n,i)=1]i=\frac{\varphi(n)*n+[n=1]}{2}$
解析:
枚举最大公约数d,
$$Ans=\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{d}\rfloor}[(i,j)=1]i*j$$
我们先考虑 j<=i 的情况,
$$\quad\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{i}[(i,j)=1]i*j\\$$
$$=\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\frac{\varphi(i)*i+[i=1]}{2}*i$$
还有i<=j的情况没考虑,其实两者是对称的 ,上面的式子乘2就好了,然后(1,1)这一对多算了一次了,所以-1就好了,
$$Ans=\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\varphi(i)*i^2$$
令$F(n)=\sum_{i=1}^{n}\varphi(i)*i^2$
$$Ans=\sum_{d=1}^{n}d*F(\lfloor\frac{n}{d}\rfloor)$$
欧拉函数的前缀和$\phi(n)$之前博客里写过 按照类似的方法可以推出来
$$F(n)=\frac{n^2*(n+1)^2}{4}-\sum_{i=2}^{n}\sum_{j=1}^{\lfloor\frac{n}{i}\rfloor}\varphi(j)*i^2*j^2\\$$
$$=\frac{n^2*(n+1)^2}{4}-\sum_{i=2}^{n}i^2\sum_{j=1}^{\lfloor\frac{n}{i}\rfloor}\varphi(j)*j^2\\$$
$$=\frac{n^2*(n+1)^2}{4}-\sum_{i=2}^{n}i^2F(\lfloor\frac{n}{i}\rfloor)$$
到此为止可以$O(n^{\frac{2}{3}})$求出Ans
AC代码
#include <bits/stdc++.h>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a))
#define huan printf("\n");
#define debug(a,b) cout<<a<<" "<<b<<" ";
using namespace std;
const int maxn=1e6+,inf=0x3f3f3f3f;
typedef long long ll;
const ll mod = ;
typedef pair<int,int> pii;
int check[maxn],prime[maxn],phi[maxn],sum[maxn];
void Phi(int N)//线性筛
{
int pos=;sum[]=;
sum[]=phi[]=;
for(ll i = ; i <= N ; i++)
{
if (!check[i])
prime[pos++] = i,phi[i]=i-;
for (int j = ; j < pos && i*prime[j] <= N ; j++)
{
check[i*prime[j]] = ;
if (i % prime[j] == )
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else
phi[i*prime[j]]=phi[i]*(prime[j]-);
}
sum[i]=(sum[i-]+(phi[i]*i%mod)*i%mod)%mod;
}
}
unordered_map<ll,ll> ma;
ll inv2=;
ll inv4=;
ll inv6=;
ll solve(ll n)
{
if(n<=1e6)
return sum[n];
else if(ma.count(n))
return ma[n];
ll temp = ((n%mod)*((n+)%mod)%mod)*inv2%mod;
temp=temp*temp%mod;
for(ll i=,j;i<=n;i=j+)
{
j=n/(n/i);
ll r=(((j%mod)*((j+)%mod)%mod)*((*j+)%mod)%mod)*inv6%mod;
ll l=(((i%mod)*((i-)%mod)%mod)*((*i-)%mod)%mod)*inv6%mod;
r=(r-l+mod)%mod;
temp = (temp-solve(n/i)*r%mod+mod)%mod;
}
return ma[n]=temp;
}
int main()
{
ll n;
Phi(1e6);
scanf("%lld",&n);
ll ans=;
for(ll i=,j;i<=n;i=j+)
{
j=n/(n/i);
ll r=((j%mod)*((j+)%mod)%mod)*inv2%mod;
ll l=((i%mod)*((i-)%mod)%mod)*inv2%mod;
r=(r-l+mod)%mod;
ans=(ans+solve(n/i)*r%mod)%mod;
}
printf("%lld\n",ans);
}
51 Nod 1238 最小公倍数之和 V3 杜教筛的更多相关文章
- 51NOD 1238 最小公倍数之和 V3 [杜教筛]
1238 最小公倍数之和 V3 三种做法!!! 见学习笔记,这里只贴代码 #include <iostream> #include <cstdio> #include < ...
- 【51nod】1238 最小公倍数之和 V3 杜教筛
[题意]给定n,求Σi=1~nΣj=1~n lcm(i,j),n<=10^10. [算法]杜教筛 [题解]就因为写了这个非常规写法,我折腾了3天…… $$ans=\sum_{i=1}^{n}\s ...
- 51 NOD 1238 最小公倍数之和 V3
原题链接 最近被51NOD的数论题各种刷……(NOI快到了我在干什么啊! 然后发现这题在网上找不到题解……那么既然A了就来骗一波访问量吧…… (然而并不怎么会用什么公式编辑器,写得丑也凑合着看吧…… ...
- [51Nod1238]最小公倍数之和 V3[杜教筛]
题意 给定 \(n\) ,求 \(\sum_{i=1}^n \sum_{j=1}^n lcm(i,j)\). \(n\leq 10^{10}\) 分析 推式子 \[\begin{aligned} an ...
- [51Nod 1238] 最小公倍数之和 (恶心杜教筛)
题目描述 求∑i=1N∑j=1Nlcm(i,j)\sum_{i=1}^N\sum_{j=1}^Nlcm(i,j)i=1∑Nj=1∑Nlcm(i,j) 2<=N<=10102<=N ...
- 51NOD 1237 最大公约数之和 V3 [杜教筛]
1237 最大公约数之和 V3 题意:求\(\sum_{i=1}^n\sum_{j=1}^n(i,j)\) 令\(A(n)=\sum_{i=1}^n(n,i) = \sum_{d\mid n}d \c ...
- 51nod 237 最大公约数之和 V3 杜教筛
Code: #include <bits/stdc++.h> #include <tr1/unordered_map> #define setIO(s) freopen(s&q ...
- 51nod 1238 最小公倍数之和 V3
51nod 1238 最小公倍数之和 V3 求 \[ \sum_{i=1}^N\sum_{j=1}^N lcm(i,j) \] \(N\leq 10^{10}\) 先按照套路推一波反演的式子: \[ ...
- 51nod 1238 最小公倍数之和 V3 【欧拉函数+杜教筛】
首先题目中给出的代码打错了,少了个等于号,应该是 G=0; for(i=1;i<=N;i++) for(j=1;j<=N;j++) { G = (G + lcm(i,j)) % 10000 ...
随机推荐
- 使用laravel框架的eloquent\DB模型连接多个数据库
1.配置.env文件 DB_HOST_TRAILER=127.0.0.1DB_PORT_TRAILER=3306DB_DATABASE_TRAILER=htms_trailerDB_USERNAME_ ...
- 【android】android对位图文件的支持
Android 支持以下三种格式的位图文件:.png(首选)..jpg(可接受)..gif(不建议).
- 18/07/2017 R matrix
矩阵:二维数组,元素拥有相同模式(数值型,字符型或者逻辑型) mymatrix <- matrix (vector, nrow_num_of_rows, ncol_num_of_columns, ...
- LeetCode(279)Perfect Squares
题目 Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9 ...
- ACM-ICPC 2015 Shenyang Preliminary Contest B. Best Solver
The so-called best problem solver can easily solve this problem, with his/her childhood sweetheart. ...
- 使用jquery.layout.js构建页眉/页脚/左侧导航/中间展示内容的网页结构
背景: 快速将一个页面分成几个部分,在导航和页眉的位置放置公用的元素. 准备: jquery.layout.js 首先,向页面中引入如下js文件和css文件,代码: <link href=&qu ...
- bash函数定义/使用/传参…
函数:function, 功能 过程式编程,代码重用 模块化编程 简洁 语法: function f_name { ...
- ThreeJs 基础入门
本文来自网易云社区 作者:唐钊 Three.js 是一款运行在浏览器中的 3D 引擎,你可以用它在 web 中创建各种三维场景,包括了摄影机.光影.材质等各种对象.使用它可以让我们更加直观的了解 we ...
- stl vector 类
目录 [-]说明构造方法例子vector 类中定义了4中种构造函数: · 默认构造函数,构造一个初始长度为0的空向量,如:vector<int> v1; · 带有单个整形参数的构造函数,此 ...
- getattr、setattr、hasattr
写一个演示类 class test(): title="验证getattr.setattr.hasattr方法" def run(self): return "run方法 ...