51 Nod 1238 最小公倍数之和 V3 杜教筛
题目链接:http://www.51nod.com/Challenge/Problem.html#!#problemId=1238
题意:求$\sum_{i=1}^{n}\sum_{j=1}^{n}lcm(i,j)=\sum_{i=1}^{n}\sum_{j=1}^{n}{\frac{i*j}{gcd(i,j)}}$,$1\leq{n}\leq10^{10}$.
知识提要:小于等于n中与n互质的数总和为$\sum_{i=1}^{n}[(n,i)=1]i=\frac{\varphi(n)*n+[n=1]}{2}$
解析:
枚举最大公约数d,
$$Ans=\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{d}\rfloor}[(i,j)=1]i*j$$
我们先考虑 j<=i 的情况,
$$\quad\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{i}[(i,j)=1]i*j\\$$
$$=\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\frac{\varphi(i)*i+[i=1]}{2}*i$$
还有i<=j的情况没考虑,其实两者是对称的 ,上面的式子乘2就好了,然后(1,1)这一对多算了一次了,所以-1就好了,
$$Ans=\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\varphi(i)*i^2$$
令$F(n)=\sum_{i=1}^{n}\varphi(i)*i^2$
$$Ans=\sum_{d=1}^{n}d*F(\lfloor\frac{n}{d}\rfloor)$$
欧拉函数的前缀和$\phi(n)$之前博客里写过 按照类似的方法可以推出来
$$F(n)=\frac{n^2*(n+1)^2}{4}-\sum_{i=2}^{n}\sum_{j=1}^{\lfloor\frac{n}{i}\rfloor}\varphi(j)*i^2*j^2\\$$
$$=\frac{n^2*(n+1)^2}{4}-\sum_{i=2}^{n}i^2\sum_{j=1}^{\lfloor\frac{n}{i}\rfloor}\varphi(j)*j^2\\$$
$$=\frac{n^2*(n+1)^2}{4}-\sum_{i=2}^{n}i^2F(\lfloor\frac{n}{i}\rfloor)$$
到此为止可以$O(n^{\frac{2}{3}})$求出Ans
AC代码
#include <bits/stdc++.h>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a))
#define huan printf("\n");
#define debug(a,b) cout<<a<<" "<<b<<" ";
using namespace std;
const int maxn=1e6+,inf=0x3f3f3f3f;
typedef long long ll;
const ll mod = ;
typedef pair<int,int> pii;
int check[maxn],prime[maxn],phi[maxn],sum[maxn];
void Phi(int N)//线性筛
{
int pos=;sum[]=;
sum[]=phi[]=;
for(ll i = ; i <= N ; i++)
{
if (!check[i])
prime[pos++] = i,phi[i]=i-;
for (int j = ; j < pos && i*prime[j] <= N ; j++)
{
check[i*prime[j]] = ;
if (i % prime[j] == )
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else
phi[i*prime[j]]=phi[i]*(prime[j]-);
}
sum[i]=(sum[i-]+(phi[i]*i%mod)*i%mod)%mod;
}
}
unordered_map<ll,ll> ma;
ll inv2=;
ll inv4=;
ll inv6=;
ll solve(ll n)
{
if(n<=1e6)
return sum[n];
else if(ma.count(n))
return ma[n];
ll temp = ((n%mod)*((n+)%mod)%mod)*inv2%mod;
temp=temp*temp%mod;
for(ll i=,j;i<=n;i=j+)
{
j=n/(n/i);
ll r=(((j%mod)*((j+)%mod)%mod)*((*j+)%mod)%mod)*inv6%mod;
ll l=(((i%mod)*((i-)%mod)%mod)*((*i-)%mod)%mod)*inv6%mod;
r=(r-l+mod)%mod;
temp = (temp-solve(n/i)*r%mod+mod)%mod;
}
return ma[n]=temp;
}
int main()
{
ll n;
Phi(1e6);
scanf("%lld",&n);
ll ans=;
for(ll i=,j;i<=n;i=j+)
{
j=n/(n/i);
ll r=((j%mod)*((j+)%mod)%mod)*inv2%mod;
ll l=((i%mod)*((i-)%mod)%mod)*inv2%mod;
r=(r-l+mod)%mod;
ans=(ans+solve(n/i)*r%mod)%mod;
}
printf("%lld\n",ans);
}
51 Nod 1238 最小公倍数之和 V3 杜教筛的更多相关文章
- 51NOD 1238 最小公倍数之和 V3 [杜教筛]
1238 最小公倍数之和 V3 三种做法!!! 见学习笔记,这里只贴代码 #include <iostream> #include <cstdio> #include < ...
- 【51nod】1238 最小公倍数之和 V3 杜教筛
[题意]给定n,求Σi=1~nΣj=1~n lcm(i,j),n<=10^10. [算法]杜教筛 [题解]就因为写了这个非常规写法,我折腾了3天…… $$ans=\sum_{i=1}^{n}\s ...
- 51 NOD 1238 最小公倍数之和 V3
原题链接 最近被51NOD的数论题各种刷……(NOI快到了我在干什么啊! 然后发现这题在网上找不到题解……那么既然A了就来骗一波访问量吧…… (然而并不怎么会用什么公式编辑器,写得丑也凑合着看吧…… ...
- [51Nod1238]最小公倍数之和 V3[杜教筛]
题意 给定 \(n\) ,求 \(\sum_{i=1}^n \sum_{j=1}^n lcm(i,j)\). \(n\leq 10^{10}\) 分析 推式子 \[\begin{aligned} an ...
- [51Nod 1238] 最小公倍数之和 (恶心杜教筛)
题目描述 求∑i=1N∑j=1Nlcm(i,j)\sum_{i=1}^N\sum_{j=1}^Nlcm(i,j)i=1∑Nj=1∑Nlcm(i,j) 2<=N<=10102<=N ...
- 51NOD 1237 最大公约数之和 V3 [杜教筛]
1237 最大公约数之和 V3 题意:求\(\sum_{i=1}^n\sum_{j=1}^n(i,j)\) 令\(A(n)=\sum_{i=1}^n(n,i) = \sum_{d\mid n}d \c ...
- 51nod 237 最大公约数之和 V3 杜教筛
Code: #include <bits/stdc++.h> #include <tr1/unordered_map> #define setIO(s) freopen(s&q ...
- 51nod 1238 最小公倍数之和 V3
51nod 1238 最小公倍数之和 V3 求 \[ \sum_{i=1}^N\sum_{j=1}^N lcm(i,j) \] \(N\leq 10^{10}\) 先按照套路推一波反演的式子: \[ ...
- 51nod 1238 最小公倍数之和 V3 【欧拉函数+杜教筛】
首先题目中给出的代码打错了,少了个等于号,应该是 G=0; for(i=1;i<=N;i++) for(j=1;j<=N;j++) { G = (G + lcm(i,j)) % 10000 ...
随机推荐
- CentOS7.2 虚拟机网卡无法启动
在开机之后,发现网卡没有启动起来,进行了如下操作1.ifup ens33Bringing up interface ens33: Error: Connection activation failed ...
- Huawei warns against 'Berlin Wall' in digital world
From China Daily Huawei technologies criticized recent registration imposed on the Chinese tech comp ...
- REST Framework 处理一个超链接序列化问题
问题简述 翻译: 不正确的配置 无法使用视图名称“snippet-detail”解析超链接关系的URL.您可能没有在API中包含相关的模型,或者在该字段上错误地配置了' lookup field '属 ...
- logging记录了其他操作的问题
做atm作业的时候,记录转账操作的那个功能的文件里,同时也记录了增加账号和冻结账号的操作 2018-11-28 17:14:51,754 : transfer : INFO : 用户edward向用户 ...
- Hadoop4.2HDFS测试报告之三
第一组:文件存储写过程记录 NameNode:1 DataNode:1 本地存储 scp localpath romotepath 500 2 1 23.67 NameNode:1 DataNode: ...
- POJ3216 最小路径覆盖
首先说一下题意,Q个区域,M个任务,每个区域任务可能有多个,然后给你个到各地所需时间的矩阵,每个任务都有开始和持续时间,问最少需要多少工人? 每个工人只能同时执行一个任务. 通过题意,我的瞬间反应就是 ...
- HDU 3473 Minimum Sum 划分树
题意: 给出一个长度为\(n(1 \leq n \leq 10^5)\)的序列\(a\) 有若干次查询l r:找到一个\(x\)使得\(\sum \limits_{l \leq i \leq r} \ ...
- socket中send和recv函数
Socket一次Recv接受的字节有限制么? 从套接字接收数据. 返回值是表示接收数据的字符串. 一次接收的最大数据量由bufsize指定.它默认为零. 注意为了最好地匹配硬件和网络现实,bufsiz ...
- R语言采坑系列——Warning message: In validDetails.polygon(x) : 强制改变过程中产生了NA
用ggplot2的geom_density_2d时,总是不能填充图案,并报错: Warning message: In validDetails.polygon(x) : 强制改变过程中产生了NA 解 ...
- 【Luogu】P3203弹飞绵羊(分块)
题目链接 正解是LCT但我不会呀蛤蛤蛤蛤蛤 (分块我也没想出来 把区间分成根n个块,每个块内记录两个东西,就是该位置弹多少次能够弹出这个块,以及该位置弹到最后弹出去了之后能够弹到哪里. 然后查询就一个 ...