题目链接:http://www.51nod.com/Challenge/Problem.html#!#problemId=1238

题意:求$\sum_{i=1}^{n}\sum_{j=1}^{n}lcm(i,j)=\sum_{i=1}^{n}\sum_{j=1}^{n}{\frac{i*j}{gcd(i,j)}}$,$1\leq{n}\leq10^{10}$.

知识提要:小于等于n中与n互质的数总和为$\sum_{i=1}^{n}[(n,i)=1]i=\frac{\varphi(n)*n+[n=1]}{2}$

解析:

枚举最大公约数d,

$$Ans=\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{d}\rfloor}[(i,j)=1]i*j$$

我们先考虑 j<=i 的情况,

$$\quad\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{i}[(i,j)=1]i*j\\$$

$$=\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\frac{\varphi(i)*i+[i=1]}{2}*i$$

还有i<=j的情况没考虑,其实两者是对称的 ,上面的式子乘2就好了,然后(1,1)这一对多算了一次了,所以-1就好了,

$$Ans=\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\varphi(i)*i^2$$

令$F(n)=\sum_{i=1}^{n}\varphi(i)*i^2$

$$Ans=\sum_{d=1}^{n}d*F(\lfloor\frac{n}{d}\rfloor)$$

欧拉函数的前缀和$\phi(n)$之前博客里写过 按照类似的方法可以推出来

$$F(n)=\frac{n^2*(n+1)^2}{4}-\sum_{i=2}^{n}\sum_{j=1}^{\lfloor\frac{n}{i}\rfloor}\varphi(j)*i^2*j^2\\$$
$$=\frac{n^2*(n+1)^2}{4}-\sum_{i=2}^{n}i^2\sum_{j=1}^{\lfloor\frac{n}{i}\rfloor}\varphi(j)*j^2\\$$
$$=\frac{n^2*(n+1)^2}{4}-\sum_{i=2}^{n}i^2F(\lfloor\frac{n}{i}\rfloor)$$

到此为止可以$O(n^{\frac{2}{3}})$求出Ans

AC代码

#include <bits/stdc++.h>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a))
#define huan printf("\n");
#define debug(a,b) cout<<a<<" "<<b<<" ";
using namespace std;
const int maxn=1e6+,inf=0x3f3f3f3f;
typedef long long ll;
const ll mod = ;
typedef pair<int,int> pii;
int check[maxn],prime[maxn],phi[maxn],sum[maxn];
void Phi(int N)//线性筛
{
int pos=;sum[]=;
sum[]=phi[]=;
for(ll i = ; i <= N ; i++)
{
if (!check[i])
prime[pos++] = i,phi[i]=i-;
for (int j = ; j < pos && i*prime[j] <= N ; j++)
{
check[i*prime[j]] = ;
if (i % prime[j] == )
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else
phi[i*prime[j]]=phi[i]*(prime[j]-);
}
sum[i]=(sum[i-]+(phi[i]*i%mod)*i%mod)%mod;
}
}
unordered_map<ll,ll> ma;
ll inv2=;
ll inv4=;
ll inv6=;
ll solve(ll n)
{
if(n<=1e6)
return sum[n];
else if(ma.count(n))
return ma[n];
ll temp = ((n%mod)*((n+)%mod)%mod)*inv2%mod;
temp=temp*temp%mod;
for(ll i=,j;i<=n;i=j+)
{
j=n/(n/i);
ll r=(((j%mod)*((j+)%mod)%mod)*((*j+)%mod)%mod)*inv6%mod;
ll l=(((i%mod)*((i-)%mod)%mod)*((*i-)%mod)%mod)*inv6%mod;
r=(r-l+mod)%mod;
temp = (temp-solve(n/i)*r%mod+mod)%mod;
}
return ma[n]=temp;
}
int main()
{
ll n;
Phi(1e6);
scanf("%lld",&n);
ll ans=;
for(ll i=,j;i<=n;i=j+)
{
j=n/(n/i);
ll r=((j%mod)*((j+)%mod)%mod)*inv2%mod;
ll l=((i%mod)*((i-)%mod)%mod)*inv2%mod;
r=(r-l+mod)%mod;
ans=(ans+solve(n/i)*r%mod)%mod;
}
printf("%lld\n",ans);
}

51 Nod 1238 最小公倍数之和 V3 杜教筛的更多相关文章

  1. 51NOD 1238 最小公倍数之和 V3 [杜教筛]

    1238 最小公倍数之和 V3 三种做法!!! 见学习笔记,这里只贴代码 #include <iostream> #include <cstdio> #include < ...

  2. 【51nod】1238 最小公倍数之和 V3 杜教筛

    [题意]给定n,求Σi=1~nΣj=1~n lcm(i,j),n<=10^10. [算法]杜教筛 [题解]就因为写了这个非常规写法,我折腾了3天…… $$ans=\sum_{i=1}^{n}\s ...

  3. 51 NOD 1238 最小公倍数之和 V3

    原题链接 最近被51NOD的数论题各种刷……(NOI快到了我在干什么啊! 然后发现这题在网上找不到题解……那么既然A了就来骗一波访问量吧…… (然而并不怎么会用什么公式编辑器,写得丑也凑合着看吧…… ...

  4. [51Nod1238]最小公倍数之和 V3[杜教筛]

    题意 给定 \(n\) ,求 \(\sum_{i=1}^n \sum_{j=1}^n lcm(i,j)\). \(n\leq 10^{10}\) 分析 推式子 \[\begin{aligned} an ...

  5. [51Nod 1238] 最小公倍数之和 (恶心杜教筛)

    题目描述 求∑i=1N∑j=1Nlcm(i,j)\sum_{i=1}^N\sum_{j=1}^Nlcm(i,j)i=1∑N​j=1∑N​lcm(i,j) 2<=N<=10102<=N ...

  6. 51NOD 1237 最大公约数之和 V3 [杜教筛]

    1237 最大公约数之和 V3 题意:求\(\sum_{i=1}^n\sum_{j=1}^n(i,j)\) 令\(A(n)=\sum_{i=1}^n(n,i) = \sum_{d\mid n}d \c ...

  7. 51nod 237 最大公约数之和 V3 杜教筛

    Code: #include <bits/stdc++.h> #include <tr1/unordered_map> #define setIO(s) freopen(s&q ...

  8. 51nod 1238 最小公倍数之和 V3

    51nod 1238 最小公倍数之和 V3 求 \[ \sum_{i=1}^N\sum_{j=1}^N lcm(i,j) \] \(N\leq 10^{10}\) 先按照套路推一波反演的式子: \[ ...

  9. 51nod 1238 最小公倍数之和 V3 【欧拉函数+杜教筛】

    首先题目中给出的代码打错了,少了个等于号,应该是 G=0; for(i=1;i<=N;i++) for(j=1;j<=N;j++) { G = (G + lcm(i,j)) % 10000 ...

随机推荐

  1. CentOS7.2 虚拟机网卡无法启动

    在开机之后,发现网卡没有启动起来,进行了如下操作1.ifup ens33Bringing up interface ens33: Error: Connection activation failed ...

  2. Huawei warns against 'Berlin Wall' in digital world

    From China Daily Huawei technologies criticized recent registration imposed on the Chinese tech comp ...

  3. REST Framework 处理一个超链接序列化问题

    问题简述 翻译: 不正确的配置 无法使用视图名称“snippet-detail”解析超链接关系的URL.您可能没有在API中包含相关的模型,或者在该字段上错误地配置了' lookup field '属 ...

  4. logging记录了其他操作的问题

    做atm作业的时候,记录转账操作的那个功能的文件里,同时也记录了增加账号和冻结账号的操作 2018-11-28 17:14:51,754 : transfer : INFO : 用户edward向用户 ...

  5. Hadoop4.2HDFS测试报告之三

    第一组:文件存储写过程记录 NameNode:1 DataNode:1 本地存储 scp localpath romotepath 500 2 1 23.67 NameNode:1 DataNode: ...

  6. POJ3216 最小路径覆盖

    首先说一下题意,Q个区域,M个任务,每个区域任务可能有多个,然后给你个到各地所需时间的矩阵,每个任务都有开始和持续时间,问最少需要多少工人? 每个工人只能同时执行一个任务. 通过题意,我的瞬间反应就是 ...

  7. HDU 3473 Minimum Sum 划分树

    题意: 给出一个长度为\(n(1 \leq n \leq 10^5)\)的序列\(a\) 有若干次查询l r:找到一个\(x\)使得\(\sum \limits_{l \leq i \leq r} \ ...

  8. socket中send和recv函数

    Socket一次Recv接受的字节有限制么? 从套接字接收数据. 返回值是表示接收数据的字符串. 一次接收的最大数据量由bufsize指定.它默认为零. 注意为了最好地匹配硬件和网络现实,bufsiz ...

  9. R语言采坑系列——Warning message: In validDetails.polygon(x) : 强制改变过程中产生了NA

    用ggplot2的geom_density_2d时,总是不能填充图案,并报错: Warning message: In validDetails.polygon(x) : 强制改变过程中产生了NA 解 ...

  10. 【Luogu】P3203弹飞绵羊(分块)

    题目链接 正解是LCT但我不会呀蛤蛤蛤蛤蛤 (分块我也没想出来 把区间分成根n个块,每个块内记录两个东西,就是该位置弹多少次能够弹出这个块,以及该位置弹到最后弹出去了之后能够弹到哪里. 然后查询就一个 ...