Codeforces 620F Xors on Segments(暴力+DP)
题目链接 Xors on Segments
预处理出$x[i]$ $=$ $1$ $xor$ $2$ $xor$ $3$ $xor$ $……$ $xor$ $i$
话说这题$O(n^{2})$居然能过
先对询问离线。
然后$dp[i]$表示以$a[i]$为开头的所有连续序列中最大答案。
然后依次处理到$a[j]$的时候如果以$j$为右端点的询问的左端点小于等于$i$则更新。
复杂度$O(n^{2})$
#include <bits/stdc++.h> using namespace std; #define rep(i, a, b) for (int i(a); i <= (b); ++i) int x[1000010], a[50010], l[50010], r[50010], ans[5010];
vector < pair <int, int> > v[50010];
int n, q; int main(){ rep(i, 1, 1000001) x[i] = x[i - 1] ^ i;
scanf("%d%d", &n, &q);
rep(i, 1, n) scanf("%d", a + i);
rep(i, 1, q){
scanf("%d%d", l + i, r + i);
v[r[i]].push_back({l[i], i});
} rep(i, 1, n){
int dp = 0;
rep(j, i, n){
dp = max(dp, x[a[i]] ^ x[a[j]] ^ min(a[i], a[j]));
for (auto u : v[j]){
if (u.first <= i) ans[u.second] = max(ans[u.second], dp);
}
}
} rep(i, 1, q) printf("%d\n", ans[i]);
return 0;
}
Codeforces 620F Xors on Segments(暴力+DP)的更多相关文章
- codeforces 620F. Xors on Segments
题目链接 定义一种操作f(u, v) = u^u+1^.......^v. (u<=v), 给n个数, q个询问, 每个询问给出一个区间[l, r], 求这个区间里的f(a[i], a[j]) ...
- Educational Codeforces Round 6 F. Xors on Segments 暴力
F. Xors on Segments 题目连接: http://www.codeforces.com/contest/620/problem/F Description You are given ...
- 暴力/DP Codeforces Beta Round #22 (Div. 2 Only) B. Bargaining Table
题目传送门 /* 题意:求最大矩形(全0)的面积 暴力/dp:每对一个0查看它左下的最大矩形面积,更新ans 注意:是字符串,没用空格,好事多磨,WA了多少次才发现:( 详细解释:http://www ...
- Codeforces 749E Gosha is hunting 二分+DP
很神奇的一题 看完题解不由惊叹 题意:$n$个神奇宝贝 $a$个普通球 $b$个高级球 普通球抓住$i$神奇宝贝的概率为$u[i]$ 高级球为$p[i]$ 一起用为$u[i]+p[i]-u[i]*p[ ...
- Luogu P1436 棋盘分割 暴力DP
我的天,,,,,n=8,k<=15,,,这怕不是暴力DP+高维数组.... 开一个五维数组f[k][i][j][p][q]表示从(i,j)到(p,q)中分成k个矩形最小的平方和. 然后初始化时用 ...
- 【2019.8.8 慈溪模拟赛 T1】开箱(chest)(暴力DP水过)
转化题意 这题目乍一看十分玄学,完全不可做. 但实际上,假设我们在原序列从小到大排序之后,选择开的宝箱编号是\(p_{1\sim Z}\),则最终答案就是: \[\sum_{i=1}^Za_{p_i} ...
- 【2019.8.12 慈溪模拟赛 T1】钥匙(key)(暴力DP)
暴力\(DP\) 这题做法很多,有\(O(n^2)\)的,有\(O(n^2logn)\)的,还有徐教练的\(O(nlogn)\)的,甚至还有\(bzt\)的二分+线段树优化建图的费用流. 我懒了点,反 ...
- [POJ3612] Telephone Wire(暴力dp+剪枝)
[POJ3612] Telephone Wire(暴力dp+剪枝) 题面 有N根电线杆,初始高度为h[i],要给相邻的两根连线.可以选择拔高其中一部分电线杆,把一根电线杆拔高\(\Delta H\)的 ...
- [Codeforces 865C]Gotta Go Fast(期望dp+二分答案)
[Codeforces 865C]Gotta Go Fast(期望dp+二分答案) 题面 一个游戏一共有n个关卡,对于第i关,用a[i]时间通过的概率为p[i],用b[i]通过的时间为1-p[i],每 ...
随机推荐
- ipvsadm启动报错解决方法
Centos7 yum -y install ipvadm 安装后,启动ipvsadm却报错. Redirecting to /bin/systemctl start ipvsadm.service ...
- 小试nginx日志分析xlog
nginx配置: http { #...其他配置 log_format tpynormal '$remote_addr | [$time_local] | $host | "$request ...
- Ubuntu安装sogou拼音输入法
1.更新系统:sudo apt-get update 2.更新相关依赖 sudo apt-get install fcitx -f 2.安装fcitx:sudo apt-get install fci ...
- F查询与Q查询
F查询 如果我们要对两个字段的值做比较,那该怎么做呢? Django 提供 F() 来做这样的比较.F() 的实例可以在查询中引用字段,来比较同一个 model 实例中两个不同字段的值. # 查询评论 ...
- LeetCode(279)Perfect Squares
题目 Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9 ...
- nrf开发笔记一开发软件
nrf52810 的开发环境,比较主流的可以使用keil,iar亦可.sdk中,使用的是pca10040e,s112.虽然开发板共用一个型号(pca10040) keil5中,cmsis 需要4.5. ...
- POJ:3228-Gold Transportation(要求最小生成树最大边最小)
Gold Transportation Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 3079 Accepted: 1101 D ...
- POJ:1094-Sorting It All Out(拓扑排序经典题型)
Sorting It All Out Time Limit: 1000MS Memory Limit: 10000K Description An ascending sorted sequence ...
- 使用fio测试磁盘I/O性能
简介: fio是测试IOPS的非常好的工具,用来对硬件进行压力测试和验证,支持13种不同的I/O引擎,包括:sync,mmap, libaio, posixaio, SG v3, splice, nu ...
- 装饰器与lambda
装饰器 实际上理解装饰器的作用很简单,在看core python相关章节的时候大概就是这种感觉.只是在实际应用的时候,发现自己很难靠直觉决定如何使用装饰器,特别是带参数的装饰器,于是摊开来思考了一番, ...