题目描述

如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用。

输入输出格式

输入格式:

第一行包含四个正整数N、M、S、T,分别表示点的个数、有向边的个数、源点序号、汇点序号。

接下来M行每行包含四个正整数ui、vi、wi、fi,表示第i条有向边从ui出发,到达vi,边权为wi(即该边最大流量为wi),单位流量的费用为fi。

输出格式:

一行,包含两个整数,依次为最大流量和在最大流量情况下的最小费用。

输入输出样例

输入样例#1:

4 5 4 3
4 2 30 2
4 3 20 3
2 3 20 1
2 1 30 9
1 3 40 5
输出样例#1:

50 280

说明

时空限制:1000ms,128M

数据规模:

对于30%的数据:N<=10,M<=10

对于70%的数据:N<=1000,M<=1000

对于100%的数据:N<=5000,M<=50000

样例说明:

如图,最优方案如下:

第一条流为4-->3,流量为20,费用为3*20=60。

第二条流为4-->2-->3,流量为20,费用为(2+1)*20=60。

第三条流为4-->2-->1-->3,流量为10,费用为(2+9+5)*10=160。

故最大流量为50,在此状况下最小费用为60+60+160=280。

故输出50 280。

思路:

  裸费用流:

  唯一优化:先不建反向边,当用到反向边时才建;

来,上代码:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> #define maxn 5005
#define maxm 100005
#define INF 0x7ffffff using namespace std; int n,m,s,t,V[maxm],F[maxm],E[maxm],W[maxm],cnt=;
int head[maxn],dis[maxn],pre[maxn],U[maxm],maxflow,cost; bool if_[maxn]; char Cget; inline void in(int &now)
{
now=,Cget=getchar();
while(Cget>''||Cget<'') Cget=getchar();
while(Cget>=''&&Cget<='')
{
now=now*+Cget-'';
Cget=getchar();
}
} bool spfa()
{
int que[maxm],h=,tail=;
for(int i=;i<=n;i++) dis[i]=INF,pre[i]=-;
dis[s]=,if_[s]=true,que[]=s;
while(h<tail)
{
int now=que[h++];
for(int i=head[now];i;i=E[i])
{
if(F[i]&&dis[V[i]]>dis[now]+W[i])
{
dis[V[i]]=dis[now]+W[i],pre[V[i]]=i;
if(!if_[V[i]])
{
if_[V[i]]=true;
que[tail++]=V[i];
}
}
}
if_[now]=false;
}
return dis[t]<INF;
} int main()
{
in(n),in(m),in(s),in(t);
int v,f,w,u;
while(m--)
{
in(u),in(v),in(f),in(w);
V[++cnt]=v,F[cnt]=f,W[cnt]=w;
U[cnt]=u,E[cnt]=head[u],head[u]=cnt++;
}
while(spfa())
{
int now=t,pos=INF;
while(pre[now]!=-)
{
if(F[pre[now]]<pos) pos=F[pre[now]];
now=U[pre[now]];
}
now=t;
while(pre[now]!=-)
{
F[pre[now]]-=pos;
if(!V[pre[now]^])
{
V[pre[now]^]=U[pre[now]];
U[pre[now]^]=V[pre[now]];
W[pre[now]^]=-W[pre[now]];
E[pre[now]^]=head[V[pre[now]]];
head[V[pre[now]]]=pre[now]^;
}
F[pre[now]^]+=pos;
now=U[pre[now]];
}
maxflow+=pos,cost+=pos*dis[t];
}
cout<<maxflow<<' '<<cost;
return ;
}

AC日记——【模板】最小费用最大流 P3381的更多相关文章

  1. 【洛谷 p3381】模板-最小费用最大流(图论)

    题目:给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 解法:在Dinic的基础下做spfa算法. 1 #include<cst ...

  2. P3381 [模板] 最小费用最大流

    EK  + dijkstra (2246ms) 开氧气(586ms) dijkstra的势 可以处理负权 https://www.luogu.org/blog/28007/solution-p3381 ...

  3. 洛谷.3381.[模板]最小费用最大流(zkw)

    题目链接 Update:我好像刚知道多路增广就是zkw费用流.. //1314ms 2.66MB 本题优化明显 #include <queue> #include <cstdio&g ...

  4. P3381 【模板】最小费用最大流

    P3381 [模板]最小费用最大流 题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 输入输出格式 输入格式: 第一行 ...

  5. 洛谷P3381 最小费用最大流模板

    https://www.luogu.org/problem/P3381 题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用 ...

  6. 经典网络流题目模板(P3376 + P2756 + P3381 : 最大流 + 二分图匹配 + 最小费用最大流)

    题目来源 P3376 [模板]网络最大流 P2756 飞行员配对方案问题 P3381 [模板]最小费用最大流 最大流 最大流问题是网络流的经典类型之一,用处广泛,个人认为网络流问题最具特点的操作就是建 ...

  7. P3381 【模板】最小费用最大流(MCMF)

    P3381 [模板]最小费用最大流 题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 输入格式 第一行包含四个正整数N ...

  8. 洛谷P3381 - 【模板】最小费用最大流

    原题链接 题意简述 模板题啦~ 题解 每次都以费用作为边权求一下最短路,然后沿着最短路增广. Code //[模板]最小费用最大流 #include <cstdio> #include & ...

  9. Luogu P3381 (模板题) 最小费用最大流

    <题目链接> 题目大意: 给定一张图,给定条边的容量和单位流量费用,并且给定源点和汇点.问你从源点到汇点的最带流和在流量最大的情况下的最小费用. 解题分析: 最小费用最大流果题. 下面的是 ...

随机推荐

  1. 传智 Python基础班+就业班+课件 【最新完整无加密视频课程】

    点击了解更多Python课程>>> 传智 Python基础班+就业班+课件 [最新完整无加密视频课程] 直接课程目录 python基础 linux操作系统基础) 1-Linux以及命 ...

  2. CentOS 系统下Gitlab搭建与基本配置 以及代码备份迁移过程

    GitLab 是一个开源的版本管理系统,提供了类似于 GitHub 的源代码浏览,管理缺陷和注释等功能,你可以将代码免费托管到 GitLab.com,而且不限项目数量和成员数.最吸引人的一点是,可以在 ...

  3. php生成zip压缩文件的方法,支持文件和压缩包路径查找

    /* * new creatZip($_dir,$_zipName); *@ _dir是被压缩的文件夹名称,可使用路径,例 'a'或者'a/test.txt'或者'test.txt' *@ _zipN ...

  4. python 取余运算

    python中取余运算逻辑如下: 如果a 与d 是整数,d 非零,那么余数 r 满足这样的关系: a = qd + r , q 为整数,且0 ≤ |r| < |d|. 经过测试可发现,pytho ...

  5. NTC温度采集之数据拟合——freemat软件实现

    在stm32温度采样的过程中,使用到了NTC传感器,上拉接6.2K的电阻,信号给AD采样端口,通过NTC的电阻阻值表中,计算得到下面两端数据,在freemat中实现数据拟合,用于程序中温度和电压信号的 ...

  6. Netcore 基础之TagHelper知识

    饮水思源,来自:http://www.cnblogs.com/liontone 的BLOG中关于taghelper中的内容 概要 TagHelper是ASP.NET 5的一个新特性.也许在你还没有听说 ...

  7. 用asp.net+Jquery+Ajax+sqlserver编写的 (英语六级记单词)

    开始(英语对程序员的重要性引用) 出处 英语的重要性已经毋庸置疑,对于程序员来说更甚,一些最新的技术资料是英文的,如果想进入外企英语也是一个很重要的条件.对于程序员来说怎样学习好英语,在此谈一下我的一 ...

  8. Nginx从入门到放弃-第5章 Nginx架构篇

    5-1 Nginx常见问题_架构篇介绍 5-2 Nginx常见问题_多个server中虚拟主机读取的优先级 5-3 Nginx常见问题_多个location匹配的优先级1 5-4 Nginx常见问题_ ...

  9. 【java基础 17】集合中各实现类的性能分析

    大致的再回顾一下java集合框架的基本情况 一.各Set实现类的性能分析 1.1,HashSet用于添加.查询 HashSet和TreeSet是Set的两个典型实现,HashSet的性能总是比Tree ...

  10. java EL详解

    转自:http://www.codeceo.com/article/java-el-usage.html 一.EL简介 1.语法结构 ${expression} 2.[]与.运算符 EL 提供.和[] ...