题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=4746

题意:

1≤x,y≤n , 求gcd(x,y)分解后质因数个数小于等k的(x,y)的对数。

分析:

莫比乌斯反演。

还是一个套路,我们设

f(d):满足gcd(x,y)=d且x,y均在给定范围内的(x,y)的对数。

F(d):满足d|gcd(x,y)且x,y均在给定范围内的(x,y)的对数。

显然F(x)=[n/x]∗[m/x],反演后我们得到

f(x)=∑x|dμ(d/x)[n/d]∗[m/d]

最直接的方法,枚举质数p,那么

ans=∑pmin(n,m)(∑dmin(n/p,m/p)μ(d)∗[n/(p∗d)]∗[m/(p∗d)])

这样肯定会超时。

我们令a=p∗d,那么

ans=∑a=1min(n,m)[n/a]∗[m/a]∗∑p|aμ(a/p)

我们希望快速获得每个a对应的∑p|aμ(a/p),由于题目规定了最大的质因子数目,所以我们增加一维,设f[i][j]表示质因子数目小于等于j时 前i项和,根据公式计算即可。

最后我们再取个前缀和就好了。注意这里仍然使用了分段优化。

代码:

/*
-- Hdu 4746
-- Created by jiangyuzhu
-- 2016/5/30
*/
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <stack>
using namespace std;
typedef long long ll;
#define sa(n) scanf("%d", &(n))
#define sal(n) scanf("%I64d", &(n))
#define pl(x) cout << #x << " " << x << endl
#define mdzz cout<<"mdzz"<<endl;
const int maxn = 5e5 + 5 ;
int tot = 0;
int miu[maxn], prime[maxn], f[maxn][20 + 5];
int cnt[maxn];
bool flag[maxn];
void mobius()
{
miu[1] = 1;
tot = 0;
for(int i = 2; i < maxn; i++){
if(!flag[i]){
prime[tot++] = i;
miu[i] = -1;
cnt[i] = 1;
}
for(int j = 0; j < tot && i * prime[j] < maxn; j++){
flag[i * prime[j]] = true;
cnt[i * prime[j]] = cnt[i] + 1;
if(i % prime[j]){
miu[i * prime[j]] = -miu[i];
}
else{
miu[i * prime[j]] = 0;
break;
}
}
}
for(int i = 1; i < maxn; i++){
for(int j = i; j < maxn; j += i){
f[j][cnt[i]] += miu[j / i];
}
}
for(int i = 1; i < maxn; i++){
for(int j = 1; j < 20; j++){
f[i][j] += f[i][j - 1] ;
}
}
//前缀和
for(int i = 1; i < maxn; i++){
for(int j = 0; j < 20; j++){
f[i][j] += f[i - 1][j];
}
}
}
int main (void)
{
mobius();
int T;sa(T);
int n, m, k;
for(int kas = 1; kas <= T; kas++){
scanf("%d%d%d", &n, &m, &k);
ll ans = 0;
k = min(k, 19);
int j;
if(n > m) swap(n, m);
for(int i = 1; i <= n; i = j + 1){
j = min(n /(n / i), m / (m / i ));
ans += (n / j) * 1ll * (m / j) * (f[j][k] - f[i - 1][k]);
}
printf("%lld\n", ans);
}
return 0;
}

HDU 4746 Mophues【莫比乌斯反演】的更多相关文章

  1. HDU 4746 Mophues (莫比乌斯反演应用)

    Mophues Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 327670/327670 K (Java/Others) Total ...

  2. hdu 4746 Mophues 莫比乌斯反演+前缀和优化

    Mophues 题意:给出n, m, p,求有多少对a, b满足gcd(a, b)的素因子个数<=p,(其中1<=a<=n, 1<=b<=m) 有Q组数据:(n, m, ...

  3. HDU 4746 Mophues 莫比乌斯反演

    分析: http://blog.csdn.net/acdreamers/article/details/12871643 分析参见这一篇 http://wenku.baidu.com/view/fbe ...

  4. Mophues HDU - 4746 (莫比乌斯反演)

    Mophues \[ Time Limit: 10000 ms\quad Memory Limit: 262144 kB \] 题意 求出满足 \(gcd\left(a,b\right) = k\), ...

  5. HDU - 4746预处理莫比乌斯反演

    链接 求[1,n] 和 [1,m]中有多少对数的GCD的素因子个数小于等于p 直接暴力做特定超时,所以我们想办法预处理,对于p大于18(1到5e5的最大素数因子个数)的情况,每一对都满足条件,O(1) ...

  6. HDU 4746 Mophues(莫比乌斯反演)题解

    题意: \(Q\leq5000\)次询问,每次问你有多少对\((x,y)\)满足\(x\in[1,n],y\in[1,m]\)且\(gcd(x,y)\)的质因数分解个数小于等于\(p\).\(n,m, ...

  7. hdu.5212.Code(莫比乌斯反演 && 埃氏筛)

    Code Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submi ...

  8. hdu 1695 GCD 莫比乌斯反演入门

    GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...

  9. HDU 1695 GCD 莫比乌斯反演

    分析:简单的莫比乌斯反演 f[i]为k=i时的答案数 然后就很简单了 #include<iostream> #include<algorithm> #include<se ...

随机推荐

  1. apicloud入门学习笔记1:简单介绍

    官网地址:https://www.apicloud.com/ 新手开发指南:https://docs.apicloud.com/APICloud/junior-develop-guide 开发语言:H ...

  2. Gym - 100781G Goblin Garden Guards (扫描线)

    题意: n 只哥布林,每只哥布林都有一个位置坐标. m 个炮台,每个炮台都有一个位置坐标和一个攻击半径. 如果一个哥布林在任何一个炮台的攻击范围内,都会被杀死. 求最后没有被杀死的哥布林的数量. 这题 ...

  3. 使用jquery.layout.js构建页眉/页脚/左侧导航/中间展示内容的网页结构

    背景: 快速将一个页面分成几个部分,在导航和页眉的位置放置公用的元素. 准备: jquery.layout.js 首先,向页面中引入如下js文件和css文件,代码: <link href=&qu ...

  4. PHP GD库---之头像合成九宫格

    public function createMosaicGroupAvatar($pic_list = array(), $bg_w = 396, $bg_h = 396) { if (!$pic_l ...

  5. 【原创】Mysql中事务ACID实现原理

    引言 照例,我们先来一个场景~ 面试官:"知道事务的四大特性么?" 你:"懂,ACID嘛,原子性(Atomicity).一致性(Consistency).隔离性(Isol ...

  6. XP系统连接win10家庭版共享的打印机方法

    1.高级共享设置.按照win7正常设置."家庭网络"公用网络”“工作网络”之类的注意根据当前配置设置! 2.由于控制面板无法开启Guest账户.需要用任务管理器,运行cmd(管理员 ...

  7. 关于freetype在安装中的遇到的问题

    本人电脑配置的是Anconda环境+pycharm2017.2.2 comuniity,每次安装什么包就是直接pip install 的,但是这次在安装freetype的安装中却遇到了麻烦. 具体是在 ...

  8. 在ie9下在textbox框里面输入内容按enter键会触发按钮的事件

    问题 在ie下,如果存在有button标签,如果在textbox里面输入内容,按下enter键,则会触发第一个按钮的click事件,经过测试,在IE10以及以下的都存在这个问题 原因 浏览器默认行为不 ...

  9. webdriver高级应用- 启动FireFox的同时打开Firebug

    1. 首先本机Firefox浏览器需要安装一下firebug插件,具体怎么安装这里不赘述,网上教程很多. 2. 具体自动化实现的代码如下: #encoding=utf-8 from selenium ...

  10. python - unitest - 实战题目

    '''题目要求 1:自己写一个工具类,完成数学的加减乘除以及平方积操作2:对每个方法写2个用例3:针对测试用例选用不同的方法去执行,然后生成测试报告''' '''实现: 3个文件: work_2018 ...