hdu_2092_整数解
枚举
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
int main(){
int n,m;
int i,j;
int a,b;
bool success;
while(~scanf("%d%d",&n,&m)){
if(n==&&m==) break;
success=;
for(i=-;i<=;++i){
if( (n-i)*i == m ){
success=; break;
}
}
if(success) printf("Yes\n");
else printf("No\n");
}
}
hdu_2092_整数解的更多相关文章
- 整数矩阵CMO 2102回馈(gauss整数解)
PS:今天上午,非常郁闷,有很多简单基础的问题搞得我有些迷茫,哎,代码几天不写就忘.目前又不当COO,还是得用心记代码哦! 本题是CMO(数学 Olympics) 2012 第二题 所以还是很坑的…… ...
- 《A First Course in Probability》-chaper1-组合分析-方程整数解的个数
在概率论问题中求解基本事件.某个事件的可能情况数要涉及到组合分析. 而这一部分主要涉及到简单的计数原理和二项式定理.多项式定理. 我们从一个简单的实例入手. 方程的整数解个数: Tom喜欢钓鱼,一直他 ...
- HDOJ 2092 整数解(2次方程整数解公式)
Problem Description 有二个整数,它们加起来等于某个整数,乘起来又等于另一个整数,它们到底是真还是假,也就是这种整数到底存不存在,实在有点吃不准,你能快速回答吗?看来只能通过编程. ...
- HDU 2092 整数解
整数解 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- exgcd求解同余方程的最小正整数解 poj1061 poj2115
这两题都是求解同余方程,并要求出最小正整数解的 对于给定的Ax=B(mod C) 要求x的最小正整数解 首先这个式子可转化为 Ax+Cy=B,那么先用exgcd求出Ax+Cy=gcd(A,C)的解x ...
- A - Character Encoding HDU - 6397 - 方程整数解-容斥原理
A - Character Encoding HDU - 6397 思路 : 隔板法就是在n个元素间的(n-1)个空中插入k-1个板,可以把n个元素分成k组的方法 普通隔板法 求方程 x+y+z=10 ...
- MT【228】整数解的个数
求方程$x+y+z=24$的整数解的个数,要求$1\le x\le 5,12\le y\le 18,-1\le z\le12$ 解:设$a_r$是方程$X+Y+Z=r$的满足上述要求的整数解的个数,那 ...
- 方程整数解-2015省赛C语言A组第一题
方程整数解 方程: a^2 + b^2 + c^2 = 1000(或参见[图1.jpg])这个方程有整数解吗?有:a,b,c=6,8,30 就是一组解.你能算出另一组合适的解吗? 请填写该解中最小的数 ...
- x+y+z=n的正整数解
题:x+y+z=n,其中(n>=3),求x,y,z的正整数解的个数根据图象法:x>=1,y>=1,x+y<=n-1
随机推荐
- Vue.js - day6
注意: 有时候使用npm i node-sass -D装不上,这时候,就必须使用 cnpm i node-sass -D 在普通页面中使用render函数渲染组件 在webpack中配置.vue组件页 ...
- Somethings about Floors题解
题目内容:一个楼梯有N级(N >=0), 每次走1级或2级, 从底走到顶一共有多少种走法? 输入要求:只有一行输入,并且只有一个数N(如果N > 20,则N = N%21,即保证N的范围控 ...
- VC运行时库(/MD、/MT等)
VC项目属性→配置属性→C/C++→代码生成→运行时库 可以采用的方式有:多线程(/MT).多线程调试(/MTd).多线程DLL(/MD).多线程调试DLL(/MDd).单线程(/ML).单线程调试( ...
- ORM进阶操作
一.聚合查询:aggregate(*args, **kwargs) aggregate()是QuerySet 的一个终止子句,意思是说,它返回一个包含一些键值对的字典.键的名称是聚合值的标识符,值是计 ...
- 程序windows上可以上传附件,部署到 linux服务器后出现 “上传目录 不可写” 怎么解决?
这样的问题一般都是linux 下文件读写权限引起的,用 shell 命名到上传附件的目录(如 cd /data/www/project/upload/),然后执行 shell 文件权限设置: 例如 ...
- Tensorflow_入门学习_1
1.0 TensorFlow graphs Tensorflow是基于graph based computation: 如: a=(b+c)∗(c+2) 可分解为 d=b+c e=c+2 a=d∗e ...
- 树形dp——覆盖所有边的最少费用(Protecting Zonk)
一.问题描述 有一个n(n<=10000)个节点的无根树.有两种装置A,B,每种都有无限多个. 1.在某个节点X使用A装置需要C1(C1<=1000)的花费,并且此时与节点X相连的边都被覆 ...
- WPF中实现两个窗口之间传值
在使用WPF的时候,我们经常会用到窗体之间传值,下面示例主窗口传值到子窗口,子窗口传值到主窗口的方法. 一.主窗口向子窗口传值 主窗口向子窗口传值主要方法就是在子窗口建立一个接收主窗口值的变量,然后实 ...
- Ace 在HTML中使用方法
<!DOCTYPE html> <html> <head> <title>Demo of ACE Editor</title> <!- ...
- Maven归纳
一.常用功能 1.Maven的中央仓库 https://mvnrepository.com/ 2.添加jar包依赖 1.首先点击pom.xml,然后点击弹出页面中的Dependencies选项,接 ...