扩展欧几里得求逆元

实话说这个算法如果手推的话问题不大,无非就是辗转相除法的逆过程,还有一种就是利用扩展欧几里德算法,学信安数学基础的时候问题不大,但现在几乎都忘了,刷题的时候也是用kuangbin博主全国通用的模板,代码十分简洁,但并没有理解其原理,学的时候也只了解了个大概。

来看代码吧:

#include<bits/stdc++.h>
using namespace std;
int E_GCD(int a,int b,int &x,int &y)
{
if(!a&&!b) return -1;
if(!b)
{
x=1,y=0;
return a;
}
int d=E_GCD(b,a%b,y,x);
y-=a/b*x;
return d;
}
int main()
{
int a,n;
while(~scanf("%d%d",&a,&n))
{
int x,y;
int k=E_GCD(a,n,x,y);
printf("%d\n",(x+n)%n);
}
return 0;
}

公钥密码之RSA密码算法扩展欧几里德求逆元!!的更多相关文章

  1. 公钥密码之RSA密码算法大素数判定:Miller-Rabin判定法!

    公钥密码之RSA密码算法大素数判定:Miller-Rabin判定法! 先存档再说,以后实验报告还得打印上交. Miller-Rabin大素数判定对于学算法的人来讲不是什么难事,主要了解其原理. 先来灌 ...

  2. POJ-1061青蛙的约会,扩展欧几里德求逆元!

                                                               青蛙的约会 以前不止一次看过这个题,但都没有去补..好吧,现在慢慢来做. 友情提示 ...

  3. HDU 5768Lucky7(多校第四场)容斥+中国剩余定理(扩展欧几里德求逆元的)+快速乘法

    地址:http://acm.hdu.edu.cn/showproblem.php?pid=5768 Lucky7 Time Limit: 2000/1000 MS (Java/Others)    M ...

  4. CodeForces 146E - Lucky Subsequence DP+扩展欧几里德求逆元

    题意: 一个数只含有4,7就是lucky数...现在有一串长度为n的数...问这列数有多少个长度为k子串..这些子串不含两个相同的lucky数... 子串的定义..是从这列数中选出的数..只要序号不同 ...

  5. 51Nod 3的幂的和(扩展欧几里德求逆元)

    求:3^0 + 3^1 +...+ 3^(N) mod 1000000007 Input 输入一个数N(0 <= N <= 10^9) Output 输出:计算结果 Input示例 3 O ...

  6. 【hdu 1576】A/B(数论--拓展欧几里德 求逆元 模版题)

    题意:给出 A%9973 和 B,求(A/B)%9973的值. 解法:拓展欧几里德求逆元.由于同余的性质只有在 * 和 + 的情况下一直成立,我们要把 /B 转化为 *B-1,也就是求逆元. 对于 B ...

  7. 扩展gcd求逆元

    当模数为素数时可以用费马小定理求逆元. 模数为合数时,费马小定理大部分情况下失效,此时,只有与模数互质的数才有逆元(满足费马小定理的合数叫伪素数,讨论这个问题就需要新开一个博客了). (对于一个数n, ...

  8. One Person Game(扩展欧几里德求最小步数)

    One Person Game Time Limit: 2 Seconds      Memory Limit: 65536 KB There is an interesting and simple ...

  9. HDU 3923 Invoker(polya定理+乘法逆元(扩展欧几里德+费马小定理))

    Invoker Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 122768/62768K (Java/Other) Total Subm ...

随机推荐

  1. JS常用的技术

    思考与总结 1.模块化 曾看到某大牛说:模块化和组件化是前端开发的一大趋势.所谓的模块化一般是指为了实现一个特定的功能而将所有的代码(对象)封装成一个模块.而AMD就是requireJS为指定模块规范 ...

  2. Handler消息机制的一些原理(直接用code讲解)——Android开发

    package com.example.handlertest; import android.os.Bundle; import android.os.Handler; import android ...

  3. block 应用说明

    一.Block定义 Block可以理解为一个函数指针(即它是一个指针,指向某个函数) returnType (^blockName) (parameter list) = ^ (parameter l ...

  4. mac下相关操作命令

    查看端口使用情况 lsof -i tcp:

  5. jenkins+phantomjs环境搭建及使用

    #jenkins+phantomjs 前端性能自动化测试的安装和使用#gcc GNU编译器套件 https://gcc.gnu.org/ #nginx 高性能的HTTP和反向代理服务器 http:// ...

  6. LR中常见请求的使用示例

    Action(){ //application/x-www-form-urlencoded //application/json //web_add_auto_header("Content ...

  7. Cordova插件中JavaScript代码与Java的交互细节介绍

    在Cordova官网中有这么一张架构图:大家看右下角蓝色的矩形框"Custom Plugin"--自定义插件.意思就是如果您用Cordova打包Mobile应用时,发现您的移动应用 ...

  8. softmax_loss

    softmax_loss中的ignore_label是来自于loss layer,而不是softmax_loss的参数

  9. Springboot邮箱接口(使用个人邮箱发送邮件)

    近期项目使用邮件验证,这里使用个人邮箱进行测试,记录开发笔记 SpringBoot自带短信接口 maven pom.xml 引入: <dependency> <groupId> ...

  10. Philipp Wagner

    本文大部分来自OpenCV官网上的Face Reconition with OpenCV这节内容(http://docs.opencv.org/modules/contrib/doc/facerec/ ...