scikit-learn 是机器学习领域非常热门的一个开源库,基于Python 语言写成。可以免费使用。

网址: http://scikit-learn.org/stable/index.html

上面有很多的教程,编程实例。而且还做了很好的总结,下面这张图基本概括了传统机器学习领域的大多数理论与相关算法。

我们可以看到,机器学习分为四大块,分别是 classification (分类), clustering (聚类), regression (回归), dimensionality reduction (降维)。

给定一个样本特征 x, 我们希望预测其对应的属性值 y, 如果 y 是离散的, 那么这就是一个分类问题,反之,如果 y 是连续的实数, 这就是一个回归问题。

如果给定一组样本特征 S={x∈RD}, 我们没有对应的 y, 而是想发掘这组样本在 D 维空间的分布, 比如分析哪些样本靠的更近,哪些样本之间离得很远, 这就是属于聚类问题。

如果我们想用维数更低的子空间来表示原来高维的特征空间, 那么这就是降维问题。

classification & regression

无论是分类还是回归,都是想建立一个预测模型 H,给定一个输入 x, 可以得到一个输出 y:

y=H(x)

不同的只是在分类问题中, y 是离散的; 而在回归问题中 y 是连续的。所以总得来说,两种问题的学习算法都很类似。所以在这个图谱上,我们看到在分类问题中用到的学习算法,在回归问题中也能使用。分类问题最常用的学习算法包括 SVM (支持向量机) , SGD (随机梯度下降算法), Bayes (贝叶斯估计), Ensemble, KNN 等。而回归问题也能使用 SVR, SGD, Ensemble 等算法,以及其它线性回归算法。

clustering

聚类也是分析样本的属性, 有点类似classification, 不同的就是classification 在预测之前是知道 y 的范围, 或者说知道到底有几个类别, 而聚类是不知道属性的范围的。所以 classification 也常常被称为 supervised learning, 而clustering就被称为 unsupervised learning。

clustering 事先不知道样本的属性范围,只能凭借样本在特征空间的分布来分析样本的属性。这种问题一般更复杂。而常用的算法包括 k-means (K-均值), GMM (高斯混合模型) 等。

dimensionality reduction

降维是机器学习另一个重要的领域, 降维有很多重要的应用, 特征的维数过高, 会增加训练的负担与存储空间, 降维就是希望去除特征的冗余, 用更加少的维数来表示特征. 降维算法最基础的就是PCA了, 后面的很多算法都是以PCA为基础演化而来。

机器学习 scikit-learn 图谱的更多相关文章

  1. 机器学习-scikit learn学习笔记

    scikit-learn官网:http://scikit-learn.org/stable/ 通常情况下,一个学习问题会包含一组学习样本数据,计算机通过对样本数据的学习,尝试对未知数据进行预测. 学习 ...

  2. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  3. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  4. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  5. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  6. Scikit Learn

    Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.

  7. 机器学习框架Scikit Learn的学习

    一   安装 安装pip 代码如下:# wget "https://pypi.python.org/packages/source/p/pip/pip-1.5.4.tar.gz#md5=83 ...

  8. 机器学习 machine learn

    机器学习 机器学习 概述 什么是机器学习 机器学习是一门能够让编程计算机从数据中学习的计算机科学.一个计算机程序在完成任务T之后,获得经验E,其表现效果为P,如果任务T的性能表现,也就是用以衡量的P, ...

  9. Query意图分析:记一次完整的机器学习过程(scikit learn library学习笔记)

    所谓学习问题,是指观察由n个样本组成的集合,并根据这些数据来预测未知数据的性质. 学习任务(一个二分类问题): 区分一个普通的互联网检索Query是否具有某个垂直领域的意图.假设现在有一个O2O领域的 ...

  10. Python第三方库(模块)"scikit learn"以及其他库的安装

    scikit-learn是一个用于机器学习的 Python 模块. 其主页:http://scikit-learn.org/stable/. GitHub地址: https://github.com/ ...

随机推荐

  1. chm文件打不开的解决办法

    我今天在网上找了找C++函数库,下载下来一个 .chm 文件,打开之后发现只显示了目录,内容却显示不出来. 显示是这样:右边区域显示不出来. 在网上查了一下发现CHM文件是网上比较多的电子书籍显示格式 ...

  2. robot framework selenium2library定位

    进行页面元素操作,最麻烦的莫过于元素定位了,经常提示element is not visible 或者element is not exist 下面介绍常见的定位方法和定位中的问题 1 使用name和 ...

  3. x264代码剖析(十三):核心算法之帧间预測函数x264_mb_analyse_inter_*()

    x264代码剖析(十三):核心算法之帧间预測函数x264_mb_analyse_inter_*() 帧间预測是指利用视频时间域相关性,使用临近已编码图像像素预測当前图像的像素,以达到有效去除视频时域冗 ...

  4. C++常用强制类型转换

    1.static_cast 最常用的类型转换符,在正常状况下的类型转换,如把int转换成float,如: int i; float f; f=(float)i; 或者 f=static_cast(i) ...

  5. Linux进入单用户模式

    有时候配置linux的过程中,因为一些误操作导致系统初始化时堵塞或挂起而无法进入系统,原因往往是因为配置文件设置错误,部分文件被误删之类.遇到这种情况一般新手的做法就是重装(虚拟机不装白不装),但在实 ...

  6. cesium学习--初识

    一.Cesium 官方介绍:CesiumJS是一个开源的JavaScript库,用于世界级的3D地球仪和地图.任务是为静态和时间动态的内容创建领先的3D地球和地图,具有最好的性能.精度.视觉质量.平台 ...

  7. python 基础 9.3 mysql 数据操作

    #/usr/bin/python #coding=utf-8 #@Time   :2017/11/21 0:20 #@Auther :liuzhenchuan #@File   :mysql 数据操作 ...

  8. GS与数据库打交道

    GS与数据库打交道 link_stat stat = (link_stat)rPkt.size; if (stat == link_stat::link_connected) { GameChanne ...

  9. 九度OJ 1044:Pre-Post(先序后序) (n叉树、递归)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:701 解决:398 题目描述: We are all familiar with pre-order, in-order and post- ...

  10. 点聚-weboffice 6.0 (二)

    1.修订操作 //设置当前操作用户 function SetUserName() { try{ var webObj=document.getElementById("WebOffice1& ...