Description

There are several ancient Greek texts that contain descriptions of the fabled island Atlantis. Some of these texts even include maps of parts of the island. But unfortunately, these maps describe different regions of Atlantis. Your friend Bill has to know the total area for which maps exist. You (unwisely) volunteered to write a program that calculates this quantity.      

Input

The input consists of several test cases. Each test case starts with a line containing a single integer n (1 <= n <= 100) of available maps. The n following lines describe one map each. Each of these lines contains four numbers x1;y1;x2;y2 (0 <= x1 < x2 <= 100000;0 <= y1 < y2 <= 100000), not necessarily integers. The values (x1; y1) and (x2;y2) are the coordinates of the top-left resp. bottom-right corner of the mapped area.         The input file is terminated by a line containing a single 0. Don't process it.      

Output

For each test case, your program should output one section. The first line of each section must be "Test case #k", where k is the number of the test case (starting with 1). The second one must be "Total explored area: a", where a is the total explored area (i.e. the area of the union of all rectangles in this test case), printed exact to two digits to the right of the decimal point.         Output a blank line after each test case.      

Sample Input

2
10 10 20 20
15 15 25 25.5
0

Sample Output

Test case #1
Total explored area: 180.00

题目就是求所有矩形的并面积。

通过查阅知道了是扫描线,了解了扫描线的原理,用线段树手写了一下,结果PushUp函数写搓了。。看了AC的代码才知道了原因。

做法就是通过对纵坐标有序化,然后创建区间。

然后通过横向扫描过去,得到每段横向段的高度,乘以宽度就是面积了。

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#define LL long long using namespace std; //线段树
//扫描线
const int maxn = 205;
struct node
{
int lt, rt;
double height;
int num;
}tree[4*maxn]; struct Line
{
double x;
double y1, y2;
bool isLeft;
}line[maxn]; bool cmp(Line a, Line b)
{
return a.x < b.x;
} double y[maxn]; //向上更新
void PushUp(int id)
{
if(tree[id].num > 0)
{
tree[id].height = y[tree[id].rt] - y[tree[id].lt];
return;
}
if(tree[id].lt+1 == tree[id].rt)
tree[id].height = 0;
else
tree[id].height = tree[id<<1].height + tree[id<<1|1].height;
} //建立线段树
void Build(int lt, int rt, int id)
{
tree[id].lt = lt;
tree[id].rt = rt;
tree[id].height = 0;//每段的初值,根据题目要求
tree[id].num = 0;
if (lt+1 == rt)
{
//tree[id].val = 1;
return;
}
int mid = (lt + rt) >> 1;
Build(lt, mid, id<<1);
Build(mid, rt, id<<1|1);
//PushUp(id);
} //寻找符合修改的区间通过判断num进行修改
void Updata(int id,Line p)
{
if(p.y1 <= y[tree[id].lt] && p.y2 >= y[tree[id].rt])
{
if (p.isLeft > 0)
tree[id].num++;
else
tree[id].num--;
PushUp(id);
return;
}
int mid = (tree[id].lt+tree[id].rt) >> 1;
if (p.y1 < y[mid])
Updata(id<<1, p);
if (p.y2 > y[mid])
Updata(id<<1|1, p);
PushUp(id);
} int n; void Input()
{
double x1, y1, x2, y2;
int cnt = 1;
for (int i = 0; i < n; ++i)
{
scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2);
y[cnt] = y1;
y[cnt+1] = y2; line[cnt].x = x1;
line[cnt].y1 = y1;
line[cnt].y2 = y2;
line[cnt].isLeft = true; line[cnt+1].x = x2;
line[cnt+1].y1 = y1;
line[cnt+1].y2 = y2;
line[cnt+1].isLeft = false;
cnt += 2;
}
sort(y+1, y+1+2*n);
sort(line+1, line+1+2*n, cmp);
Build(1, 2*n, 1);
} double Work()
{
double ans = 0;
Updata(1, line[1]);
int len = 2*n;
for (int i = 2; i <= len; ++i)
{
ans += (line[i].x-line[i-1].x) * tree[1].height;
Updata(1, line[i]);
}
return ans;
} int main()
{
//freopen("test.in", "r", stdin);
int times = 1;
while (scanf("%d", &n) != EOF && n)
{
Input();
double ans = Work();
printf("Test case #%d\n", times);
printf("Total explored area: %.2lf\n\n", ans);
times++;
}
return 0;
}

ACM学习历程—POJ1151 Atlantis(扫描线 && 线段树)的更多相关文章

  1. poj1151 Atlantis——扫描线+线段树

    题目:http://poj.org/problem?id=1151 经典的扫描线问题: 可以用线段树的每个点代表横向被矩形上下边分割开的每一格,这样将一个矩形的出现或消失化为线段树上的单点修改: 每个 ...

  2. ACM学习历程—HDU 5289 Assignment(线段树 || RMQ || 单调队列)

    Problem Description Tom owns a company and he is the boss. There are n staffs which are numbered fro ...

  3. ACM学习历程—HDU 2795 Billboard(线段树)

    Description At the entrance to the university, there is a huge rectangular billboard of size h*w (h ...

  4. poj1151 Atlantis (线段树+扫描线+离散化)

    有点难,扫描线易懂,离散化然后线段树处理有点不太好理解. 因为这里是一个区间,所有在线段树中更新时,必须是一个长度大于1的区间才是有效的,比如[l,l]这是一根线段,而不是区间了. AC代码 #inc ...

  5. ACM学习笔记:可持久化线段树

    title : 可持久化线段树 date : 2021-8-18 tags : 数据结构,ACM 可持久化线段树 可以用来解决线段树存储历史状态的问题. 我们在进行单点修改后,线段树只有logn个(一 ...

  6. POJ 1151 Atlantis (扫描线+线段树)

    题目链接:http://poj.org/problem?id=1151 题意是平面上给你n个矩形,让你求矩形的面积并. 首先学一下什么是扫描线:http://www.cnblogs.com/scau2 ...

  7. [HDU1542]Atlantis(扫描线+线段树)

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

  8. 【POJ1151】Atlantis(线段树,扫描线)

    [POJ1151]Atlantis(线段树,扫描线) 题面 Vjudge 题解 学一学扫描线 其实很简单啦 这道题目要求的就是若干矩形的面积和 把扫描线平行于某个轴扫过去(我选的平行\(y\)轴扫) ...

  9. hdu1542 Atlantis(扫描线+线段树+离散)矩形相交面积

    题目链接:点击打开链接 题目描写叙述:给定一些矩形,求这些矩形的总面积.假设有重叠.仅仅算一次 解题思路:扫描线+线段树+离散(代码从上往下扫描) 代码: #include<cstdio> ...

随机推荐

  1. 利用JS最真实的模拟鼠标点击

    为了破解永乐票务登录验证码问题 http://www.228.com.cn/auth/login?logout 当然,打码的过程自然依赖第三方平台,但问题是,哪怕平台给了你需要点击的(相对)坐标.你又 ...

  2. Spring IOC源码分析之-刷新前的准备工作

    目录 ClassPathXmlApplicationContext的注册方式 加载父子容器 配置路径解析 容器刷新 刷新容器之刷新预处理 ClassPathXmlApplicationContext的 ...

  3. java多线程那些事之中的一个

    1.  Callable 接口 获取线程运行状态(get.get(long timeout)),取消线程(cancel(boolean  mayinterruptifrunning)).isCance ...

  4. 解决pod search出来的库不是最新

    为了让CocoaPods的引入不显示警告,在Podfile最上方加上: inhibit_all_warnings! pod search 一些第三方SDK,发现并不是最新版本,那是因为你的本地repo ...

  5. EasyPlayerPro windows播放器本地配置文件配置方法介绍

    需求背景 应EasyPlayerPro某客户需求,在EasyPlayerPro启动时,自动播放指定的url源, 不需要每次都去手动填写, 且实现自动播放,不需要手动的单击播放按钮: 为响应该需求,特增 ...

  6. rtmp直播拉流客户端EasyRTMPClient TCP窗口大小设计方法

    EasyRTMPClient 简介 EasyRTMPClient是EasyDarwin流媒体团队开发.提供的一套非常稳定.易用.支持重连接的RTMPClient工具,以SDK形式提供,接口调用非常简单 ...

  7. Html控件和Web控件(转)

    作为一名ASP.NET的初学者,了解并且区别一些混淆概念是很必须的,今天这篇博文 就是主要向大家介绍一下Html控件和Web控件.在ASP.net中,用户界面控件主要就是 Html控件和Web控件,在 ...

  8. nodejs 版本dockerfile 文件制作,和常用命令

    Dockerfile 如下 官方的node6.3的版本有点难下载,建议去网易蜂巢  https://c.163.com/hub pull hub.c.163.com/library/node:6.9 ...

  9. Android 修改Menu字体颜色和背景

    我们知道,在Android中修改TextView的字体颜色,一般是通过setTextColor()方法.虽说Android的Menu菜单项的每一项都是由TextView组成,但是Android的sdk ...

  10. Java多线程系列 基础篇05 synchronized关键字

    1. synchronized原理 在java中,每一个对象有且仅有一个同步锁,所以同步锁是依赖于对象而存在.当我们调用某对象的synchronized方法时,就获取了该对象的同步锁.例如,synch ...