Description

There are several ancient Greek texts that contain descriptions of the fabled island Atlantis. Some of these texts even include maps of parts of the island. But unfortunately, these maps describe different regions of Atlantis. Your friend Bill has to know the total area for which maps exist. You (unwisely) volunteered to write a program that calculates this quantity.      

Input

The input consists of several test cases. Each test case starts with a line containing a single integer n (1 <= n <= 100) of available maps. The n following lines describe one map each. Each of these lines contains four numbers x1;y1;x2;y2 (0 <= x1 < x2 <= 100000;0 <= y1 < y2 <= 100000), not necessarily integers. The values (x1; y1) and (x2;y2) are the coordinates of the top-left resp. bottom-right corner of the mapped area.         The input file is terminated by a line containing a single 0. Don't process it.      

Output

For each test case, your program should output one section. The first line of each section must be "Test case #k", where k is the number of the test case (starting with 1). The second one must be "Total explored area: a", where a is the total explored area (i.e. the area of the union of all rectangles in this test case), printed exact to two digits to the right of the decimal point.         Output a blank line after each test case.      

Sample Input

2
10 10 20 20
15 15 25 25.5
0

Sample Output

Test case #1
Total explored area: 180.00

题目就是求所有矩形的并面积。

通过查阅知道了是扫描线,了解了扫描线的原理,用线段树手写了一下,结果PushUp函数写搓了。。看了AC的代码才知道了原因。

做法就是通过对纵坐标有序化,然后创建区间。

然后通过横向扫描过去,得到每段横向段的高度,乘以宽度就是面积了。

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#define LL long long using namespace std; //线段树
//扫描线
const int maxn = 205;
struct node
{
int lt, rt;
double height;
int num;
}tree[4*maxn]; struct Line
{
double x;
double y1, y2;
bool isLeft;
}line[maxn]; bool cmp(Line a, Line b)
{
return a.x < b.x;
} double y[maxn]; //向上更新
void PushUp(int id)
{
if(tree[id].num > 0)
{
tree[id].height = y[tree[id].rt] - y[tree[id].lt];
return;
}
if(tree[id].lt+1 == tree[id].rt)
tree[id].height = 0;
else
tree[id].height = tree[id<<1].height + tree[id<<1|1].height;
} //建立线段树
void Build(int lt, int rt, int id)
{
tree[id].lt = lt;
tree[id].rt = rt;
tree[id].height = 0;//每段的初值,根据题目要求
tree[id].num = 0;
if (lt+1 == rt)
{
//tree[id].val = 1;
return;
}
int mid = (lt + rt) >> 1;
Build(lt, mid, id<<1);
Build(mid, rt, id<<1|1);
//PushUp(id);
} //寻找符合修改的区间通过判断num进行修改
void Updata(int id,Line p)
{
if(p.y1 <= y[tree[id].lt] && p.y2 >= y[tree[id].rt])
{
if (p.isLeft > 0)
tree[id].num++;
else
tree[id].num--;
PushUp(id);
return;
}
int mid = (tree[id].lt+tree[id].rt) >> 1;
if (p.y1 < y[mid])
Updata(id<<1, p);
if (p.y2 > y[mid])
Updata(id<<1|1, p);
PushUp(id);
} int n; void Input()
{
double x1, y1, x2, y2;
int cnt = 1;
for (int i = 0; i < n; ++i)
{
scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2);
y[cnt] = y1;
y[cnt+1] = y2; line[cnt].x = x1;
line[cnt].y1 = y1;
line[cnt].y2 = y2;
line[cnt].isLeft = true; line[cnt+1].x = x2;
line[cnt+1].y1 = y1;
line[cnt+1].y2 = y2;
line[cnt+1].isLeft = false;
cnt += 2;
}
sort(y+1, y+1+2*n);
sort(line+1, line+1+2*n, cmp);
Build(1, 2*n, 1);
} double Work()
{
double ans = 0;
Updata(1, line[1]);
int len = 2*n;
for (int i = 2; i <= len; ++i)
{
ans += (line[i].x-line[i-1].x) * tree[1].height;
Updata(1, line[i]);
}
return ans;
} int main()
{
//freopen("test.in", "r", stdin);
int times = 1;
while (scanf("%d", &n) != EOF && n)
{
Input();
double ans = Work();
printf("Test case #%d\n", times);
printf("Total explored area: %.2lf\n\n", ans);
times++;
}
return 0;
}

ACM学习历程—POJ1151 Atlantis(扫描线 && 线段树)的更多相关文章

  1. poj1151 Atlantis——扫描线+线段树

    题目:http://poj.org/problem?id=1151 经典的扫描线问题: 可以用线段树的每个点代表横向被矩形上下边分割开的每一格,这样将一个矩形的出现或消失化为线段树上的单点修改: 每个 ...

  2. ACM学习历程—HDU 5289 Assignment(线段树 || RMQ || 单调队列)

    Problem Description Tom owns a company and he is the boss. There are n staffs which are numbered fro ...

  3. ACM学习历程—HDU 2795 Billboard(线段树)

    Description At the entrance to the university, there is a huge rectangular billboard of size h*w (h ...

  4. poj1151 Atlantis (线段树+扫描线+离散化)

    有点难,扫描线易懂,离散化然后线段树处理有点不太好理解. 因为这里是一个区间,所有在线段树中更新时,必须是一个长度大于1的区间才是有效的,比如[l,l]这是一根线段,而不是区间了. AC代码 #inc ...

  5. ACM学习笔记:可持久化线段树

    title : 可持久化线段树 date : 2021-8-18 tags : 数据结构,ACM 可持久化线段树 可以用来解决线段树存储历史状态的问题. 我们在进行单点修改后,线段树只有logn个(一 ...

  6. POJ 1151 Atlantis (扫描线+线段树)

    题目链接:http://poj.org/problem?id=1151 题意是平面上给你n个矩形,让你求矩形的面积并. 首先学一下什么是扫描线:http://www.cnblogs.com/scau2 ...

  7. [HDU1542]Atlantis(扫描线+线段树)

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

  8. 【POJ1151】Atlantis(线段树,扫描线)

    [POJ1151]Atlantis(线段树,扫描线) 题面 Vjudge 题解 学一学扫描线 其实很简单啦 这道题目要求的就是若干矩形的面积和 把扫描线平行于某个轴扫过去(我选的平行\(y\)轴扫) ...

  9. hdu1542 Atlantis(扫描线+线段树+离散)矩形相交面积

    题目链接:点击打开链接 题目描写叙述:给定一些矩形,求这些矩形的总面积.假设有重叠.仅仅算一次 解题思路:扫描线+线段树+离散(代码从上往下扫描) 代码: #include<cstdio> ...

随机推荐

  1. sudo apt-get update 没有公钥,无法验证下列签名

    在更新系统源后,输入sudo apt-get update之后出现提示: W: GPG 错误:http://archive.ubuntukylin.com:10006 xenial InRelease ...

  2. cmake学习之- cmake_parse_arguments

    最后更新: 2019-06-08 一.指令介绍 cmake_parse_arguments 为解析函数(function)或 宏(macros) 参数的命令: cmake_parse_argument ...

  3. scrapy之Logging使用

    #coding:utf-8 __author__ = 'similarface' ###################### ##Logging的使用 ###################### ...

  4. iOS开发系列--让你的应用“动”起来【转载】

    概览 原文链接:http://www.cnblogs.com/kenshincui/p/3972100.html 在iOS中随处都可以看到绚丽的动画效果,实现这些动画的过程并不复杂,今天将带大家一窥i ...

  5. jQuery入门知识点

    <精通ASP.NET MVC3框架>第20章 1.jQuery文件jquery-1.5.1.js:jquey核心库常规版jquery-1.5.1.min.js:jquery核心库最小化版j ...

  6. python使用模板手记

    1.首先是$符号 在webpy中,模板html里面可以写python代码,但要用$开始.但如果网页代码本来就有$符号(javascript或者正则表达式),我们需要对其进行转意.用$$代替$ 给jqu ...

  7. EasyDSS RTMP流媒体解决方案之Windows服务安装方案

    Windows服务安装 EasyDSS_Solution流媒体解决方案,可以通过start一键启动.在实际应用中,我们希望可以设置成系统服务,那么下面我将会介绍,如何在windows中将流媒体解决方案 ...

  8. 九度OJ 1006:ZOJ问题 (递归)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:18621 解决:3197 题目描述: 对给定的字符串(只包含'z','o','j'三种字符),判断他是否能AC. 是否AC的规则如下: 1. ...

  9. 微信小程序设计指南

    微信小程序设计指南 · 小程序 https://developers.weixin.qq.com/miniprogram/design/index.html

  10. hdu 4927 java程序

    /*对于本题题意非常easy 关键在于求杨辉三角时的二项式是没实用到优化,导致超时. 对于第n行的二项式的第i个可有第i-1个乘于一个数处于一个数得到,要用到大数.java比較方便. 假如n=6,i= ...