Description

已知一个长度为n的序列a1,a2,…,an。
对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p – sqrt(abs(i-j))

Input

第一行n,(1<=n<=500000)
下面每行一个整数,其中第i行是ai。(0<=ai<=1000000000)

Output

n行,第i行表示对于i,得到的p

Sample Input

6
5
3
2
4
2
4

Sample Output

2
3
5
3
5
4

题解

http://ydcydcy1.blog.163.com/blog/static/2160890402013315391435/

 #include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<cstdio> #define ll long long
#define N 500007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if (ch=='-') f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
}int n;
int a[N];
double f[N],g[N];
struct data{int l,r,p;}q[N];
double cal(int j,int i)
{
return a[j]+sqrt(abs(i-j))-a[i];
}
int find(data t,int x)
{
int l=t.l,r=t.r;
while(l<=r)
{
int mid=(l+r)>>;
if(cal(t.p,mid)>cal(x,mid))
l=mid+;
else r=mid-;
}
return l;
}
void dp(double *F)
{
int head=,tail=;
for(int i=;i<=n;i++)
{
q[head].l++;
if(head<=tail&&q[head].r<q[head].l)head++;
if(head>tail||cal(i,n)>cal(q[tail].p,n))
{
while(head<=tail&&cal(q[tail].p,q[tail].l)<cal(i,q[tail].l))
tail--;
if(head>tail)
q[++tail]=(data){i,n,i};
else
{
int t=find(q[tail],i);
q[tail].r=t-;
q[++tail]=(data){t,n,i};
}
}
F[i]=cal(q[head].p,i);
}
}
int main()
{
n=read();
for(int i=;i<=n;i++)a[i]=read();
dp(f);
for(int i=;i<=n/;i++)swap(a[i],a[n-i+]);
dp(g);
for(int i=;i<=n;i++)
printf("%d\n",max(,(int)ceil(max(f[i],g[n-i+]))));
return ;
}

【bzoj2216】[Poi2011]Lightning Conductor 1D1D动态规划优化的更多相关文章

  1. 【BZOJ2216】Lightning Conductor(动态规划)

    [BZOJ2216]Lightning Conductor(动态规划) 题面 BZOJ,然而是权限题 洛谷 题解 \(\sqrt {|i-j|}\)似乎没什么意义,只需要从前往后做一次再从后往前做一次 ...

  2. BZOJ2216 Poi2011 Lightning Conductor 【决策单调性优化DP】

    Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt( ...

  3. bzoj2216: [Poi2011]Lightning Conductor(分治决策单调性优化)

    每个pi要求 这个只需要正反DP(?)一次就行了,可以发现这个是有决策单调性的,用分治优化 #include<iostream> #include<cstring> #incl ...

  4. BZOJ2216 [Poi2011]Lightning Conductor 【决策单调性dp】

    题目链接 BZOJ2216 题解 学过高中数学都应知道,我们要求\(p\)的极值,参变分离为 \[h_j + sqrt{|i - j|} - h_i \le p\] 实际上就是求\(h_j + sqr ...

  5. 洛谷P3515 [POI2011]Lightning Conductor(动态规划,决策单调性,单调队列)

    洛谷题目传送门 疯狂%%%几个月前就秒了此题的Tyher巨佬 借着这题总结一下决策单调性优化DP吧.蒟蒻觉得用数形结合的思想能够轻松地理解它. 首先,题目要我们求所有的\(p_i\),那么把式子变一下 ...

  6. P3515 [POI2011]Lightning Conductor[决策单调性优化]

    给定一序列,求对于每一个$a_i$的最小非负整数$p_i$,使得$\forall j \neq i $有$ p_i>=a_j-a_i+ \sqrt{|i-j|}$. 绝对值很烦 ,先分左右情况单 ...

  7. BZOJ2216 : [Poi2011]Lightning Conductor

    $f[i]=\max(a[j]+\lceil\sqrt{|i-j|}\rceil)$, 拆开绝对值,考虑j<i,则决策具有单调性,j>i同理, 所以可以用分治$O(n\log n)$解决. ...

  8. BZOJ2216: [Poi2011]Lightning Conductor(DP 决策单调性)

    题意 题目链接 Sol 很nice的决策单调性题目 首先把给出的式子移项,我们要求的$P_i = max(a_j + \sqrt{|i - j|}) - a_i$. 按套路把绝对值拆掉,$p_i = ...

  9. 【BZOJ2216】[Poi2011]Lightning Conductor 决策单调性

    [BZOJ2216][Poi2011]Lightning Conductor Description 已知一个长度为n的序列a1,a2,...,an.对于每个1<=i<=n,找到最小的非负 ...

随机推荐

  1. Python socket 粘包

    目录 1 TCP的三次握手四次挥手 0 1.1 三次握手 1 1.2 四次挥手 2 2 粘包现象 3 2.1 基于TCP制作远程执行命令操作(win服务端) 4 2.1 基于TCP制作远程执行命令操作 ...

  2. SC || Chapter 8

    栈:方法调用和局部变量的存储位置,保存基本类型 堆:在一块内存里分为多个小块,每块包含 一个对象,或者未被占用

  3. Python-DDT实现接口自动化

    Get请求参数化例子 import unittest import requests import ddt @ddt.ddt class MyTestCase(unittest.TestCase): ...

  4. LINQ结合正则表达式查询文件系统

    string startFolder = @"D:\Program Files (x86)\Microsoft Visual Studio 12.0\"; IEnumerable& ...

  5. Python——基本运算符

    计算机不止可以进行加减乘除,还可以进行多种运算,比如算数运算,逻辑运算,赋值运算等 算数运算 以下假设变量:a=10,b=20 比较运算 以下假设变量:a=10,b=20 赋值运算 以下假设变量:a= ...

  6. 洛谷 1486/BZOJ 1503 郁闷的出纳员

    1503: [NOI2004]郁闷的出纳员 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 13866  Solved: 5069[Submit][Stat ...

  7. Python pip 使用国内镜像

    ## 推荐源```https://mirrors.aliyun.com/pypi/simple/ 阿里镜像,速度快.稳定https://pypi.douban.com/simple/ 豆瓣镜像```# ...

  8. 变量赋值理解--Pyton中让两个值互换的方法

    #Pyton中让两个值互换的方法 #方法一:可以理解为相当于是同时赋值 a = 5 b = 4 a,b = b,a print(a,b) #方法二:可以理解为拿箱子过程 c = 10 d = 20 e ...

  9. linux文件属性软硬链接知识

    链接的概念 在linux系统中,链接可分为两种:一种为硬链接,另一种为软链接或符号链接.在默认不带参数的情况下,执行ln命令创建的链接是硬链接. 如果使用ln  -s创建链接则为软链接,前面文件类型为 ...

  10. build_mem_type_table

    该函数设置mem_types结构体数组,结构体定义如下: struct mem_type { unsigned int prot_pte;     //二级页表属性 unsigned int prot ...