【bzoj2216】[Poi2011]Lightning Conductor 1D1D动态规划优化
Description
已知一个长度为n的序列a1,a2,…,an。
对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p – sqrt(abs(i-j))
Input
第一行n,(1<=n<=500000)
下面每行一个整数,其中第i行是ai。(0<=ai<=1000000000)
Output
n行,第i行表示对于i,得到的p
Sample Input
5
3
2
4
2
4
Sample Output
3
5
3
5
4
题解
http://ydcydcy1.blog.163.com/blog/static/2160890402013315391435/
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<cstdio> #define ll long long
#define N 500007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if (ch=='-') f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
}int n;
int a[N];
double f[N],g[N];
struct data{int l,r,p;}q[N];
double cal(int j,int i)
{
return a[j]+sqrt(abs(i-j))-a[i];
}
int find(data t,int x)
{
int l=t.l,r=t.r;
while(l<=r)
{
int mid=(l+r)>>;
if(cal(t.p,mid)>cal(x,mid))
l=mid+;
else r=mid-;
}
return l;
}
void dp(double *F)
{
int head=,tail=;
for(int i=;i<=n;i++)
{
q[head].l++;
if(head<=tail&&q[head].r<q[head].l)head++;
if(head>tail||cal(i,n)>cal(q[tail].p,n))
{
while(head<=tail&&cal(q[tail].p,q[tail].l)<cal(i,q[tail].l))
tail--;
if(head>tail)
q[++tail]=(data){i,n,i};
else
{
int t=find(q[tail],i);
q[tail].r=t-;
q[++tail]=(data){t,n,i};
}
}
F[i]=cal(q[head].p,i);
}
}
int main()
{
n=read();
for(int i=;i<=n;i++)a[i]=read();
dp(f);
for(int i=;i<=n/;i++)swap(a[i],a[n-i+]);
dp(g);
for(int i=;i<=n;i++)
printf("%d\n",max(,(int)ceil(max(f[i],g[n-i+]))));
return ;
}
【bzoj2216】[Poi2011]Lightning Conductor 1D1D动态规划优化的更多相关文章
- 【BZOJ2216】Lightning Conductor(动态规划)
[BZOJ2216]Lightning Conductor(动态规划) 题面 BZOJ,然而是权限题 洛谷 题解 \(\sqrt {|i-j|}\)似乎没什么意义,只需要从前往后做一次再从后往前做一次 ...
- BZOJ2216 Poi2011 Lightning Conductor 【决策单调性优化DP】
Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt( ...
- bzoj2216: [Poi2011]Lightning Conductor(分治决策单调性优化)
每个pi要求 这个只需要正反DP(?)一次就行了,可以发现这个是有决策单调性的,用分治优化 #include<iostream> #include<cstring> #incl ...
- BZOJ2216 [Poi2011]Lightning Conductor 【决策单调性dp】
题目链接 BZOJ2216 题解 学过高中数学都应知道,我们要求\(p\)的极值,参变分离为 \[h_j + sqrt{|i - j|} - h_i \le p\] 实际上就是求\(h_j + sqr ...
- 洛谷P3515 [POI2011]Lightning Conductor(动态规划,决策单调性,单调队列)
洛谷题目传送门 疯狂%%%几个月前就秒了此题的Tyher巨佬 借着这题总结一下决策单调性优化DP吧.蒟蒻觉得用数形结合的思想能够轻松地理解它. 首先,题目要我们求所有的\(p_i\),那么把式子变一下 ...
- P3515 [POI2011]Lightning Conductor[决策单调性优化]
给定一序列,求对于每一个$a_i$的最小非负整数$p_i$,使得$\forall j \neq i $有$ p_i>=a_j-a_i+ \sqrt{|i-j|}$. 绝对值很烦 ,先分左右情况单 ...
- BZOJ2216 : [Poi2011]Lightning Conductor
$f[i]=\max(a[j]+\lceil\sqrt{|i-j|}\rceil)$, 拆开绝对值,考虑j<i,则决策具有单调性,j>i同理, 所以可以用分治$O(n\log n)$解决. ...
- BZOJ2216: [Poi2011]Lightning Conductor(DP 决策单调性)
题意 题目链接 Sol 很nice的决策单调性题目 首先把给出的式子移项,我们要求的$P_i = max(a_j + \sqrt{|i - j|}) - a_i$. 按套路把绝对值拆掉,$p_i = ...
- 【BZOJ2216】[Poi2011]Lightning Conductor 决策单调性
[BZOJ2216][Poi2011]Lightning Conductor Description 已知一个长度为n的序列a1,a2,...,an.对于每个1<=i<=n,找到最小的非负 ...
随机推荐
- 在.net平台上运行伪JAVA
由于在一个项目局方要求使用JAVA平台, 而当前又都是.net平台的应用. 重新用JAVA开发工作量太大. 时间也来不及. 想到在.net中有url rewrite功能, 何不先"骗&quo ...
- python_82_标准库_random模块
import random print(help(random.random)) #随机整数 print(random.randint(1,7))#生成一个[1, 7]的随机整数 print(rand ...
- java基础—泛型
一.体验泛型 JDK1.5之前的集合类中存在的问题——可以往集合中加入任意类型的对象,例如下面代码: 1 package cn.gacl.generic.summary; 2 3 import jav ...
- 浅谈 MySQL 中优化 SQL 语句查询常用的 30 种方法
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索 ...
- 【Python学习之六】高阶函数1(map、reduce、filter、sorted)
1.map map()函数接收两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回.示例: >>> def ...
- tomcat报错:java.io.IOException: 您的主机中的软件中止了一个已建立的连接。
tomcat报错: org.apache.catalina.connector.ClientAbortException: java.io.IOException: 您的主机中的软件中止了一个已建立的 ...
- CentOS7.2 虚拟机网卡无法启动
在开机之后,发现网卡没有启动起来,进行了如下操作1.ifup ens33Bringing up interface ens33: Error: Connection activation failed ...
- php 常用函数集合(持续更新中...)
php 常用函数集合 在php的开发中,巧妙的运用php自带的一些函数,会起到事半功倍的效果,在此,主要记录一些常用的函数 1.time(),microtime()函数 time():获取当前时间戳 ...
- Django之用户认证
用户认证组件简介 功能:用session记录登录验证状态 前提:必须使用django自带的auth_user表.那这里有的同学就会有疑问了,自己不能创建自己的用户表吗? 当然可以,用户认证组件虽然只针 ...
- leetcode-15-basic-string
58. Length of Last Word 解题思路: 从结尾向前搜索,空格之前的就是最后一个词了.写的时候我考虑了尾部有空格的情况.需要注意的是,测试用例中有" "的情况,此 ...