对于任何正整数x,其约数的个数记作g(x)。例如g(1)=1、g(6)=4。
如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数。例如,整数1,2,4,6等都是反质数。
现在给定一个数N,你能求出不超过N的最大的反质数么?

Input

一个数N(1<=N<=2,000,000,000)。

Output

不超过N的最大的反质数。

Sample Input

1000

Sample Output

840
 

本题似乎要先知道许多结论,不要问我证明。。

一个数约数个数=所有素因子的次数+1的乘积
举个例子就是48 = 2 ^ 4 * 3 ^ 1,所以它有(4 + 1) * (1 + 1) = 10个约数

然后可以通过计算得一个2000000000以内的数字不会有超过12个素因子

并且小素因子多一定比大素因子多要优

预处理出前12个素数直接爆搜即可

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm> #define inf 0x7fffffff
#define ll long long
using namespace std; int n,ans=,num=;
int p[]={,,,,,,,,,,,}; void dfs(int k,ll now,int cnt,int last)
{
if(k==)
{
if(now>ans&&cnt>num){ans=now;num=cnt;}
if(now<=ans&&cnt>=num){ans=now;num=cnt;}
return;
}
int t=;
for(int i=;i<=last;i++)
{
dfs(k+,now*t,cnt*(i+),i);
t*=p[k];
if(now*t>n)break;
}
}
int main()
{
scanf("%d",&n);
dfs(,,,);
printf("%d",ans);
}

【bzoj1053】[HAOI2007]反素数ant的更多相关文章

  1. bzoj1053: [HAOI2007]反素数ant

    51nod有一道类似的题...我至今仍然不会写暴搜!!! #include<cstdio> #include<cstring> #include<iostream> ...

  2. BZOJ1053 [HAOI2007]反素数ant 数论

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 传送门 - BZOJ1053 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正 ...

  3. [BZOJ1053] [HAOI2007] 反素数ant (搜索)

    Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数 ...

  4. BZOJ1053: [HAOI2007]反素数ant(爆搜)

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4163  Solved: 2485[Submit][Status][Discuss] Descript ...

  5. bzoj千题计划296:bzoj1053: [HAOI2007]反素数ant

    http://www.lydsy.com/JudgeOnline/problem.php?id=1053 求n以内约数个数最多的数 #include<cstdio> using names ...

  6. 【BZOJ1053】[HAOI2007]反素数ant 暴力

    [BZOJ1053][HAOI2007]反素数ant Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) ...

  7. BZOJ 1053: [HAOI2007]反素数ant dfs

    1053: [HAOI2007]反素数ant 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1053 Description 对于任何正整 ...

  8. 【BZOJ】1053: [HAOI2007]反素数ant

    1053: [HAOI2007]反素数ant Description: g(x)表示x的约数个数,反素数:对于任意的i (i < x),均有g(i) < g(x),则x为反素数:现在输入不 ...

  9. bzoj 1053: [HAOI2007]反素数ant 搜索

    1053: [HAOI2007]反素数ant Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1497  Solved: 821[Submit][Sta ...

  10. BZOJ 1053 [HAOI2007]反素数ant

    1053: [HAOI2007]反素数ant Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1948  Solved: 1094[Submit][St ...

随机推荐

  1. 三、npm start报错:./node_modules/history/esm/history.js解决办法

    package.json中的roadhog换为:'^2.5.0-beta.4',删除node_modules文件夹,在执行npm install,npm start.

  2. 汉明码(Hamming Code)原理及实现

    汉明码实现原理 汉明码(Hamming Code)是广泛用于内存和磁盘纠错的编码.汉明码不仅可以用来检测转移数据时发生的错误,还可以用来修正错误.(要注意的是,汉明码只能发现和修正一位错误,对于两位或 ...

  3. 如何将oracle查询的结果传输给变量

    如何将oracle查询的结果传输给变量 1. sqlplus查询时的变量设置 set echo off; #控制start命令不列出命令文件中的每一命令 set feedback off; #显示由查 ...

  4. Java微信公众号开发----定时获取access_token并保存到redis中

    本人原本是想做微信公众号菜单的创建修改删除等操作的,但是发现需要access_token,通过阅读文档,发现文档要求有以下几点: 1.access_token 获取后有效期是2小时 2.access_ ...

  5. vector总结(更新中。。。)

    vector中这两个属性很容易弄混淆. size是当前vector容器真实占用的大小,也就是容器当前拥有多少个容器. capacity是指在发生realloc前能允许的最大元素数,即预分配的内存空间. ...

  6. linux文件属性描述(inode,block)

    1.ls   -lhi 文字解释: 第一列:inode索引节点编号(人的身份证,全国唯一) 系统读取文件时首先通过文件名找到inode,然后才能读取到文件内容. 第二列:文件类型及权限(共10个字符, ...

  7. 基于axios的vue插件,让http请求更简单

    ajax-plus 基于axios 的 Vue 插件 如何使用 npm 模块引入 首先通过 npm 安装 ```npm install --save ajax-plus or yarn add aja ...

  8. Python基础——判断和循环

    判断 缩进代替大括号. 冒号(:)后换号缩进. if test=100 if test>50: print('OK') print('test') if-elif-else test=50 if ...

  9. pyqt设计

    pyqt是python设计GUI的第三方包 作为一个小白,我觉得这篇博客贼好,我就是按照这个博客写的. 这个博客一共分5步,每一步都特别详细. pyqt 打包exe时遇到的问题(我的python环境是 ...

  10. servlet 作用

    什么是Servlet Servlet是一个Java编写的程序,此程序是基于Http协议的,在服务器端运行的(如tomcat),是按照Servlet规范编写的一个Java类. 在BS架构中,早期的Web ...