Recursive sequence

Farmer John likes to play mathematics games with his N cows. Recently, they are attracted by recursive sequences. In each turn, the cows would stand in a line, while John writes two positive numbers a and b on a blackboard. And then, the cows would say their identity number one by one. The first cow says the first number a and the second says the second number b. After that, the i-th cow says the sum of twice the (i-2)-th number, the (i-1)-th number, and i4i4. Now, you need to write a program to calculate the number of the N-th cow in order to check if John’s cows can make it right. 

InputThe first line of input contains an integer t, the number of test cases. t test cases follow. 
 Each case contains only one line with three numbers N, a and b where N,a,b < 231231 as described above. 
OutputFor each test case, output the number of the N-th cow. This number might be very large, so you need to output it modulo 2147493647.Sample Input

2
3 1 2
4 1 10

Sample Output

85
369

Hint

In the first case, the third number is 85 = 2*1十2十3^4.
In the second case, the third number is 93 = 2*1十1*10十3^4 and the fourth number is 369 = 2 * 10 十 93 十 4^4.

矩阵快速幂。利用了矩阵合并将两个递推关系合并到一个矩阵中。
之前做过了不少含有变量项的题,这道题是底数为变量,指数为常数的一种。
其中变量项的递推利用了二项式定理,系数满足杨辉三角规律。
 
#include <bits/stdc++.h>
#define MAX 10
#define MOD 2147493647
using namespace std;
typedef long long ll; struct mat{
ll a[MAX][MAX];
}; mat operator *(mat x,mat y)
{
mat ans;
memset(ans.a,,sizeof(ans.a));
for(int i=;i<=;i++){
for(int j=;j<=;j++){
for(int k=;k<=;k++){
ans.a[i][j]+=(x.a[i][k]*y.a[k][j]+MOD)%MOD;
ans.a[i][j]%=MOD;
}
}
}
return ans;
}
mat qMod(mat a,ll n)
{
ll tt[][]={,,,,,,,,
,,,,,,,,
,,,,,,,,
,,,,,,,,
,,,,,,,,
,,,,,,,,
,,,,,,,,
,,,,,,,};
mat t;
for(int i=;i<=;i++){
for(int j=;j<=;j++){
t.a[i][j]=tt[i][j];
}
}
while(n){
if(n&) a=t*a;
n>>=;
t=t*t;
}
return a;
}
int main()
{
int t,i,j;
ll n,a,b;
scanf("%d",&t);
while(t--){
scanf("%I64d%I64d%I64d",&n,&a,&b);
if(n<){
if(n==) printf("%I64d\n",a);
if(n==) printf("%I64d\n",b);
continue;
}
mat x;
memset(x.a,,sizeof(x.a));
x.a[][]=b;
x.a[][]=a;
x.a[][]=***;
x.a[][]=**;
x.a[][]=*;
x.a[][]=;
x.a[][]=;
x=qMod(x,n-);
printf("%I64d\n",x.a[][]);
}
return ;
}
 

HDU - 5950 Recursive sequence(二项式+矩阵合并+矩阵快速幂)的更多相关文章

  1. HDU 5950 Recursive sequence 【递推+矩阵快速幂】 (2016ACM/ICPC亚洲区沈阳站)

    Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  2. HDU 5950 Recursive sequence 递推转矩阵

    Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  3. hdu 5950 Recursive sequence 递推式 矩阵快速幂

    题目链接 题意 给定\(c_0,c_1,求c_n(c_0,c_1,n\lt 2^{31})\),递推公式为 \[c_i=c_{i-1}+2c_{i-2}+i^4\] 思路 参考 将递推式改写\[\be ...

  4. HDU 5950 - Recursive sequence - [矩阵快速幂加速递推][2016ACM/ICPC亚洲区沈阳站 Problem C]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 Farmer John likes to play mathematics games with ...

  5. HDU 5950 Recursive sequence(矩阵快速幂)

    题目链接:Recursive sequence 题意:给出前两项和递推式,求第n项的值. 题解:递推式为:$F[i]=F[i-1]+2*f[i-2]+i^4$ 主要问题是$i^4$处理,容易想到用矩阵 ...

  6. hdu 5950 Recursive sequence 矩阵快速幂

    Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  7. HDU 5950 Recursive sequence(矩阵快速幂)题解

    思路:一开始不会n^4的推导,原来是要找n和n-1的关系,这道题的MOD是long long 的,矩阵具体如下所示 最近自己总是很坑啊,代码都瞎吉坝写,一个long long的输入写成%d一直判我TL ...

  8. hdu 5950 Recursive sequence

    题意:告诉你数列的递推公式为f(n+1)=f(n)+2*f(n-1)+(n+1)^4 以及前两项a,b:问第n项为多少,结果对2147493647取模. 题解:有递推公式,马上应该就能想到矩阵快速幂: ...

  9. Luogu 3390 【模板】矩阵快速幂 (矩阵乘法,快速幂)

    Luogu 3390 [模板]矩阵快速幂 (矩阵乘法,快速幂) Description 给定n*n的矩阵A,求A^k Input 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵 ...

随机推荐

  1. 【C#图解】PictureBox.SizeMode 属性(转)

    PictureBoxSizeMode.Normal: 默认情况下,在 Normal 模式中,Image 置于 PictureBox 的左上角,凡是因过大而不适合 PictureBox 的任何图像部分都 ...

  2. sed相关

    1 global flag sed 's/xxx/xxx/' inputfile,如果没有带global flag g的话,匹配替换的只是inputfile中的每一行的第一个匹配项.如果带了g的话,才 ...

  3. 利用socket.io实现多人聊天室(基于Nodejs)

    socket.io简单介绍 在Html5中存在着这种一个新特性.引入了websocket,关于websocket的内部实现原理能够看这篇文章.这篇文章讲述了websocket无到有,依据协议,分析数据 ...

  4. abap 数字移动小游戏

    [转自 http://blog.csdn.net/forever_crazy/article/details/6542507] report ...... selection-screen pushb ...

  5. 【windows】如何让一个程序开机自启动

    windows的开机自启动也是将一个程序放在文件夹下即可,将应用程序或者快捷方式放在如下文件夹下,即可实现开机自启动 C:\ProgramData\Microsoft\Windows\Start Me ...

  6. 【AWS】亚马逊云常用服务解释

    新公司使用的是亚马逊服务,刚开始的时候,对很多名词不太明白,总结了一下如下 1,EC2 这个是亚马逊的一种服务器服务,可以理解为跟vmware差不多,EC2为虚拟机提供载体,EC2上跑虚拟机服务器. ...

  7. Windows Server 2008 MS Office 操作 检索 COM 类工厂中 CLSID 为 {00024500-0000-0000-C000-000000000046} 的组件失败,原因是出现以下错误: 80070005 拒绝访问。 (异常来自 HRESULT:0x80070005 (E_ACCESSDENIED))。

    Make sure that you have Office runtime installed on the server. If you are using Windows Server 2008 ...

  8. RStudio安装package时出现错误

    cannot open URL 'http://www.stats.ox.ac.uk/pub/RWin/src/contrib/PACKAGES' 提示是打不开链接,你切换为国内的源试试Rstudio ...

  9. RQNOJ 622 最小重量机器设计问题:dp

    题目链接:https://www.rqnoj.cn/problem/622 题意: 一个机器由n个部件组成,每一种部件都可以从m个不同的供应商处购得. w[i][j]是从供应商j处购得的部件i的重量, ...

  10. 英语影视台词---无敌破坏王2大脑互联网(3)((Ralph)我们去喝根汁汽水吧)

    英语影视台词---无敌破坏王2大脑互联网(3)((Ralph)我们去喝根汁汽水吧) 一.总结 一句话总结: Let's go get a root beer. 1.(Ralph)让我来瞧瞧你的本事  ...