P4443 [COCI2017-2018#3] Dojave(线段树)
设\(lim=2^n-1\),对于一个区间\([l,r]\)来说,如果\(sum\neq lim\)且能换出\(x\)并换进\(y\)来,使得\(sum\bigoplus a_x\bigoplus a_y=lim\),那么\(a_x\bigoplus a_y\)是个定值,所以如果对于每一个\(x\),它对应的\(y\)都在\([l,r]\)之间,这个区间就是不合法的
因为有一一对应关系,所以整个区间是由若干个二元组构成的,\(sum\)不管异或上哪个二元组都等于\(lim\),所以如果二元组个数为偶数,所有二元组异或起来为\(0\),\(sum\)也为\(0\),如果二元组个数是奇数,那么\(sum\)就等于二元组的值,则有\(a_x\bigoplus a_y=lim\)
综上,一个区间不合法当且仅当这个区间长度为\(4\)的倍数且这个区间内每一个的\(x\),与它对应的\(a_x\bigoplus a_y=lim\)的\(y\)都在区间内
那么把每个点和它对应的\(y\)连边,那么这个区间内就不能有边连到外面。记\(cnt_i\)为点\(i\)被边覆盖的次数,那么当\(i\)作为不合法区间的右端点时,最右边的能作为这个不合法区间左端点的为\(j\),满足\(cnt_j=cnt_i\),且对于任意\(j<p<i\),\(cnt_p\neq cnt_i\),简单来说就是前面一个与它覆盖次数相等的点
然而这个点不一定合法,所以可以用线段树之类的来做一下判定
记\(dp_{i,0/1}\)为以\(i\)为右端点的,长度\(len\%4=0/2\)的区间个数,那么则有转移$$dp_{i,0}=dp_{las_i,len%4}+1$$
\]
其中\(las_i\)就是之前说的最右边的能作为不合法区间的左端点,那个要加一是要加上一个空集
//minamoto
#include<bits/stdc++.h>
#define R register
#define ls (p<<1)
#define rs (p<<1|1)
#define ll long long
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R int x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=(1<<20)+5;
struct node{int mn,mx;}tr[N<<2];
int to[N],las[N],a[N],pos[N],nxt[N],dp[N][2];
int n,m,cnt;ll ans;
void build(int p,int l,int r){
if(l==r)return (void)(tr[p]={to[l],to[l]});
int mid=(l+r)>>1;
build(ls,l,mid),build(rs,mid+1,r);
tr[p].mn=min(tr[ls].mn,tr[rs].mn);
tr[p].mx=max(tr[ls].mx,tr[rs].mx);
}
node query(int p,int l,int r,int ql,int qr){
// if(l<=r)printf("%d %d %d %d\n",l,r,ql,qr);
if(ql<=l&&qr>=r)return tr[p];
int mid=(l+r)>>1;node res={m,0};
if(ql<=mid){
node d=query(ls,l,mid,ql,qr);
cmin(res.mn,d.mn),cmax(res.mx,d.mx);
}
if(qr>mid){
node d=query(rs,mid+1,r,ql,qr);
cmin(res.mn,d.mn),cmax(res.mx,d.mx);
}return res;
}
inline bool check(int l,int r){
node res=query(1,1,m,l,r);
return res.mn>=l&&res.mx<=r;
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),m=(1<<n);
if(n==1)return puts("2"),0;
fp(i,1,m)a[i]=read(),pos[a[i]]=i;
fp(i,1,m)to[i]=pos[a[i]^(m-1)];
fp(i,1,m)if(to[i]<i)--cnt,las[i]=nxt[cnt],nxt[cnt]=i;
else ++cnt,nxt[cnt]=i;
ans=1ll*m*(m+1)/2;
build(1,1,m),dp[0][0]=1;
fp(i,1,m){
dp[i][0]=1;
if(to[i]>i)continue;
// printf("%d %d\n",las[i]+1,i);
if(check(las[i]+1,i)){
int len=(i-las[i])%4/2;
ans-=dp[las[i]][len];
dp[i][0]=dp[las[i]][len]+1;
dp[i][1]=dp[las[i]][len^1];
}
}printf("%lld\n",ans);
return 0;
}
P4443 [COCI2017-2018#3] Dojave(线段树)的更多相关文章
- LOJ #2537. 「PKUWC 2018」Minimax (线段树合并 优化dp)
题意 小 \(C\) 有一棵 \(n\) 个结点的有根树,根是 \(1\) 号结点,且每个结点最多有两个子结点. 定义结点 \(x\) 的权值为: 1.若 \(x\) 没有子结点,那么它的权值会在输入 ...
- BZOJ.5249.[九省联考2018]iiidx(贪心 线段树)
BZOJ LOJ 洛谷 \(d_i\)不同就不用说了,建出树来\(DFS\)一遍. 对于\(d_i\)不同的情况: Solution 1: xxy tql! 考虑如何把这些数依次填到树里. 首先对于已 ...
- [九省联考2018]IIIDX 贪心 线段树
~~~题面~~~ 题解: 一开始翻网上题解看了好久都没看懂,感觉很多人都讲得不太详细,所以导致一些细节的地方看不懂,所以这里就写详细一点吧,如果有不对的or不懂的可以发评论在下面. 首先有一个比较明显 ...
- 洛谷P4364 [九省联考2018]IIIDX 【线段树】
题目 [题目背景] Osu听过没?那是Konano最喜欢的一款音乐游戏,而他的梦想就是有一天自己也能做个独特酷炫的音乐游戏.现在 ,他在世界知名游戏公司KONMAI内工作,离他的梦想也越来越近了.这款 ...
- [COCI2017.1]Deda —— 解锁线段树的新玩法
众所周知,能用线段树做的题一定可以暴力 但考场上也只能想到暴力了,毕竟还是对线段树不熟练. deda 描述 有一辆车上有n个小孩,年龄为1~n,然后q个询问,M X A代表在第X站时年龄为A的小孩会下 ...
- [BZOJ5249][九省联考2018]IIIDX:线段树+贪心
分析 GXZlegend orz 构造出一组合法的解并不是难事,但是我们需要输出的是字典序最大的解. 字典序最大有另一种理解方式,就是让越小的数尽量越靠后. 我们从树的根结点出发,从1开始填数,构造出 ...
- 洛谷P4364 [九省联考2018]IIIDX(线段树)
传送门 题解看得……很……迷? 因为取完一个数后,它的子树中只能取权值小于等于它的数.我们先把权值从大到小排序,然后记$a_i$为他左边(包括自己)所有取完他还能取的数的个数.那么当取完一个点$x$的 ...
- [Luogu P4215] 踩气球 (线段树)
题面 传送门:https://www.luogu.org/problemnew/show/P4215 Solution 这题十分有意思. 首先,我们可以先想想离线做法,因为在线做法可以从离线做法推出. ...
- BZOJ_5249_Luogu_P4364_[2018多省省队联测]_IIIDX_九省联考2018_JLOI2018_线段树
BZOJ_5249_[2018多省省队联测]IIIDX_线段树 Description [题目背景] Osu听过没?那是Konano最喜欢的一款音乐游戏,而他的梦想就是有一天自己也能做个独特酷炫的音乐 ...
随机推荐
- VS重置命令:devenv.exe/resetuserdata
VS命令行下执行下面的命令: devenv.exe/resetuserdata
- win10安装VMware
首先下载VMware安装包: 双击安装: 点击:“uninstall”安装,这个过程需要一些时间 点击“Next” 选择典型或者自定义安装 这里我选择的是典型安装,点击“Next”: 选择是否检查更新 ...
- android中getWidth()和getMeasuredWidth()
getMeasuredWidth()获取的是view原始的大小,也就是这个view在XML文件中配置或者是代码中设置的大小.getWidth()获取的是这个view最终显示的大小,这个大小有可能等于原 ...
- redis一些笔记
base 字典: hget/hset 在redis字典中值只能是字符串,使用渐进式进行rehash.在rehash的过程中,会保留两个hash结构:查询时会同时查询两个结构:逐渐完成hash的迁移. ...
- Gym - 100187A A - Potion of Immortality —— 贪心
题目链接:http://codeforces.com/gym/100187/problem/A 题解: 光题意就想了很久:在最坏情况下的最小兔子数.其实就是至少用几只兔子就一定能找出仙药(答案存在的话 ...
- Ubuntu安装基础教程
作者:TeliuTe 来源:基础教程网 二十三.安装Ubuntu14.04 返回目录 下一课 14.04 版安装与前面版本类似,学习中遇到不清楚的地方,可以参考一下前面的内容,操作中注意细心,下面来看 ...
- C++类定义 常量定义
#include "stdafx.h"#include "iostream" using namespace std; class MyClass{ int _ ...
- Fast RCNN中RoI的映射关系
写在前面:下面讨论中Kernel Size为奇数,因为这样才能方便一致的确认Kernel中心. 在Fast RCNN中,为了大大减少计算量,没有进行2k次运算前向运算,而是进行了1次运算,然后在从po ...
- regular
regular.py import re # . # 只能匹配一个字母,而不是2个或0个 # \ # 转义 # 'abc\\.com' r'abc\.com' # 字符集[] # 匹配他所包括的任意字 ...
- JavaWeb----文件的上传和下载
一.开发环境搭建 创建一个FileUploadAndDownLoad项目,加入Apache的commons-fileupload文件上传组件的相关Jar包,如下图所示: 二.实现文件上传 2.1.文件 ...