题目链接:##

传送门

题目分析:##

题外话:

我即使是死了,钉在棺材里了,也要在墓里,用这腐朽的声带喊出:

根号算法牛逼!!!

显然,这是一道LCT裸题,然而在下并不会LCT于是采用了分块瞎搞

对于每个点维护两个信息:跳出块的步数\(step[i]\)和跳出块的落点\(lo[i]\)

预处理时使用类似模拟的方法。每次只处理还未处理过的点,并且对于每次处理顺带将向后跳到过的点也处理掉,具体见代码。

对于两种操作:

  • 查:利用记录的落点在大块上跳并累加答案,单次复杂度\(O(\sqrt{n})\)
  • 修:分析得到,每个点维护的两个信息都只与其块内的信息有关,所以仅需要重构一遍修改点所在块即可,单次复杂度\(O(\sqrt{n})\)

    总复杂度约为\(O(m\sqrt{n})\)

代码:##

#include<bits/stdc++.h>
#define N 200010
using namespace std;
inline int read() {
int cnt = 0, f = 1; char c;
c = getchar();
while (!isdigit(c)) {
if (c == '-') f = -f;
c = getchar();
}
while (isdigit(c)) {
cnt = cnt * 10 + c - '0';
c = getchar();
}
return cnt * f;
}
int q, pos[N], n, m, L[N], R[N], step[N], lo[N], sta[N], top, a[N], opr, x, k;
bool flag = false; void pre_work() {
q = sqrt(n);
for (register int i = 1; i <= q; i++) {
L[i] = (i - 1) * q + 1;
R[i] = i * q;
}
if (R[q] < n) {
q++;
L[q] = R[q - 1] + 1;
R[q] = n;
} for (register int i = 1; i <= q; i++)
for (register int j = L[i]; j <= R[i]; j++)
pos[j] = i; for (register int i = 1; i <= n; i++) {
if(step[i]) continue;
flag = false;
sta[++top] = i; int now = i;
while(pos[now] == pos[now + a[now]]) {
if (step[now + a[now]]) {
flag = 1;
break;
} else {
now += a[now];
sta[++top] = now;
}
}
int total = top + 1;
while (top) {
if (!flag) {
lo[sta[top]] = now + a[now];
step[sta[top]] = total - top;
} else {
lo[sta[top]] = lo[now + a[now]];
step[sta[top]] = total - top + step[now + a[now]];
}
--top;
}
}
}
void change(int q,int k) {
int p = pos[q];
a[q] = k;
for (register int i = L[p]; i <= R[p]; i++) lo[i] = step[i] = 0;
for (register int i = L[p]; i <= R[p]; i++) {
if(step[i]) continue;
flag = false;
sta[++top] = i; int now = i;
while(pos[now] == pos[now + a[now]]) {
if (step[now + a[now]]) {
flag = 1;
break;
} else {
now += a[now];
sta[++top] = now;
}
}
int total = top + 1;
while (top) {
if (!flag) {
lo[sta[top]] = now + a[now];
step[sta[top]] = total - top;
} else {
lo[sta[top]] = lo[now + a[now]];
step[sta[top]] = total - top + step[now + a[now]];
}
--top;
}
}
}
int query(int i) {
int v = i;
int ans= 0;
while (pos[v]) {
ans += step[v];
v = lo[v];
}
return ans;
}
int main() {
n = read();
for (register int i = 1; i <= n; i++) a[i] = read();
m = read();
pre_work();
for (register int i = 1; i <= m; i++) {
opr = read(); x = read();
if (opr == 1) printf("%d\n", query(x + 1));
if (opr == 2) {
k = read();
change(x + 1, k);
}
}
return 0;
}

[HNOI2010] 弾飞绵羊的更多相关文章

  1. P3203 [HNOI2010]弹飞绵羊(LCT)

    P3203 [HNOI2010]弹飞绵羊 LCT板子 用一个$p[i]$数组维护每个点指向的下个点. 每次修改时cut*1+link*1就解决了 被弹出界时新设一个点,权为0,作为终点表示出界点.其他 ...

  2. [HNOI2010] 弹飞绵羊 (分块)

    [HNOI2010] 弹飞绵羊 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上 ...

  3. 洛谷 P3203 [HNOI2010]弹飞绵羊 解题报告

    P3203 [HNOI2010]弹飞绵羊 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一 ...

  4. [BZOJ 2002] [HNOI2010]弹飞绵羊(Link Cut Tree)

    [BZOJ 2002] [HNOI2010]弹飞绵羊(Link Cut Tree) 题面 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一 ...

  5. 「洛谷P3202」[HNOI2010]弹飞绵羊 解题报告

    P3203 [HNOI2010]弹飞绵羊 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一 ...

  6. [Luogu P3203] [HNOI2010]弹飞绵羊 (LCT维护链的长度)

    题面 传送门:洛谷 Solution 这题其实是有类似模型的. 我们先考虑不修改怎么写.考虑这样做:每个点向它跳到的点连一条边,最后肯定会连成一颗以n+1为根的树(我们拿n+1代表被弹出去了).题目所 ...

  7. P3203 [HNOI2010]弹飞绵羊 —— 懒标记?分块?LCT?...FAQ orz

    好久没写博客了哈,今天来水一篇._(:з」∠)_ 题目 :弹飞绵羊(一道省选题) 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏 ...

  8. P3203 [HNOI2010]弹飞绵羊 —— 懒标记?分块?

    好久没写博客了哈,今天来水一篇._(:з」∠)_ 题目 :弹飞绵羊(一道省选题) 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏 ...

  9. 洛谷P3203 [HNOI2010] 弹飞绵羊 [LCT]

    题目传送门 弹飞绵羊 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置, ...

随机推荐

  1. matlab之细胞数组

    学习matlab的一个博客:https://blog.csdn.net/smf0504/article/details/51814362 Matlab从5.0版开始引入了一种新的数据类型—细胞( ce ...

  2. 简易html5贪吃蛇

    1. [图片] E6~0%QPA46ER843UQJ$0Z`H.jpg ​2. [文件] snake.html <!DOCTYPE html><html><head> ...

  3. 【Codeforces】Round #460 E - Congruence Equation 中国剩余定理+数论

    题意 求满足$na^n\equiv b \pmod p$的$n$的个数 因为$n \mod p ​$循环节为$p​$,$a^n\mod p​$循环节为$p-1​$,所以$na^n \mod p​$循环 ...

  4. listen 75

    Hot Jupiters Smarten Search For Other Earths Scientists are looking for Earth like planets around ot ...

  5. rust borrow and move

    extern crate core; #[deriving(Show)] struct Foo { f : Box<int> } fn main(){ let mut a = Foo {f ...

  6. leetcode 66. Plus One(高精度加法)

    Given a non-negative number represented as an array of digits, plus one to the number. The digits ar ...

  7. Sed在匹配行前后加入一行

    a 追加内容 sed ‘/匹配词/a\要加入的内容’ example.file(将内容追加到匹配的目标行的下一行位置)i 插入内容 sed ‘/匹配词/i\要加入的内容’ example.file 将 ...

  8. BZOJ-4327:JSOI2012 玄武密码(AC自动机模板题)

    在美丽的玄武湖畔,鸡鸣寺边,鸡笼山前,有一块富饶而秀美的土地,人们唤作进香河.相传一日,一缕紫气从天而至,只一瞬间便消失在了进香河中.老人们说,这是玄武神灵将天书藏匿在此.  很多年后,人们终于在进香 ...

  9. ACM学习历程—Hihocoder 1177 顺子(模拟 && 排序 && gcd)(hihoCoder挑战赛12)

      时间限制:6000ms 单点时限:1000ms 内存限制:256MB   描述 你在赌场里玩梭哈,已经被发了4张牌,现在你想要知道发下一张牌后你得到顺子的概率是多少? 假定赌场使用的是一副牌,四种 ...

  10. Lagom学习 四 CompletionStage

    Future: Java 8 之前的 Java 版本功能较弱,仅支持两种用法:要么检查 future 是否已经完成,要么等待 future 完成; Java 8 增加了 CompletableFutu ...