题意:

有一个\(N \times N\)的方阵,第\(x\)行第\(y\)列有\(C_{x,y}\)个点\((0 \leq C_{x,y} \leq 9)\)。

任选两个不同的点,求两点欧几里德距离的均值(或期望)。

然后按距离从小到大输出该距离的平方\(d_i\)和对应的点对数目\(c_i\)。

分析:

首先要化二维为一维,一般来讲给点\((x,y)\)编号\(x \times N+y(0\leq x, y < N)\)。

这里为了区分行和列从而方便计算距离,按照\(x \times 2N + y\)的方式给点编号。

这样对于两个点\((x_1,y_1)\)和\((x_2, y_2)\),对应编号分别为\(id_1 = x_1 \times 2N + y_1\)和\(id_2 = x_2 \times 2N + y_2(id_1 < id_2)\)。

两点之间的行距\(dx=\left \lceil \frac{id_1 - id_2 + N}{2} \right \rceil\)

两点之间的列距\(dy=\left | id_1 - id_2 -dx\times 2N \right |\)

然后用\(FFT\)计算两个多项式:

\[P(x)=\sum C_{i,j}x^{id_{i,j}}
\]

\[Q(x)=\sum C_{i,j}x^{-id_{i,j}}
\]

的乘积。

距离为\(0\)的点对注意去重或者单独计算。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <complex>
using namespace std; const double PI = acos(-1.0);
typedef long long LL;
typedef complex<double> Complex; void FFT(Complex* P, int n, int op) {
for(int i = 1, j = 0; i < n - 1; i++) {
for(int s = n; j ^= s >>= 1, ~j&s; );
if(i < j) swap(P[i], P[j]);
}
int log = 0;
while((1 << log) < n) log++;
for(int s = 0; s < log; s++) {
int m = 1 << s;
int m2 = m << 1;
Complex wm(cos(PI / m), sin(PI / m) * op);
for(int i = 0; i < n; i += m2) {
Complex w(1, 0);
for(int j = 0; j < m; j++, w *= wm) {
Complex u = P[i + j];
Complex t = P[i + j + m] * w;
P[i + j] = u + t;
P[i + j + m] = u - t;
}
}
}
if(op == -1) for(int i = 0; i < n; i++) P[i].real(P[i].real() / n);
} Complex P[2][1 << 22]; int n; LL cnt[2100000]; double dist(double x, double y) {
return sqrt(x * x + y * y);
} int main()
{
scanf("%d", &n);
int sum = 0;
int offset = (n - 1) * (n * 2 + 1);
for(int i = 0; i < n; i++) {
for(int j = 0; j < n; j++) {
int x; scanf("%d", &x);
sum += x;
cnt[0] += (x - 1) * x / 2;
int id = i * 2 * n + j;
P[0][id] = x;
P[1][offset-id] = x;
}
} int s = 1;
while(s < offset * 2 + 1) s <<= 1;
FFT(P[0], s, 1); FFT(P[1], s, 1);
for(int i = 0; i < s; i++) P[0][i] *= P[1][i];
FFT(P[0], s, -1); double ans = 0;
for(int i = 1; i <= offset; i++) {
LL t = (LL)(P[0][offset + i].real() + 0.5);
if(!t) continue;
int dx = ((i / n) + 1) >> 1;
int dy = abs(i - dx * n * 2);
ans += dist(dx, dy) * t;
cnt[dx*dx+dy*dy] += t;
} ans /= (double)sum * (sum - 1) / 2;
printf("%.10f\n", ans); int num = 0; int top = (n - 1) * (n - 1) * 2;
for(int i = 0; i <= top && num < 10000; i++) if(cnt[i]) {
printf("%d %lld\n", i, cnt[i]);
num++;
} return 0;
}

Aizu 2560 Point Distance FFT的更多相关文章

  1. AIZU 2560 [想法题]

    表示敲完多项式乘法&高精度乘法两道FFT模板题后就开始来磕这题了 这题相对而言应该不算模板题 不过神犇们肯定还是一眼看穿 如果原OJ访问速度较慢的话可以考虑戳这里 http://acm.hus ...

  2. CodeChef - PRIMEDST Prime Distance On Tree 树分治 + FFT

    Prime Distance On Tree Problem description. You are given a tree. If we select 2 distinct nodes unif ...

  3. codechef Prime Distance On Tree(树分治+FFT)

    题目链接:http://www.codechef.com/problems/PRIMEDST/ 题意:给出一棵树,边长度都是1.每次任意取出两个点(u,v),他们之间的长度为素数的概率为多大? 树分治 ...

  4. prime distance on a tree(点分治+fft)

    最裸的点分治+fft,调了好久,太菜了.... #include<iostream> #include<cstring> #include<cstdio> #inc ...

  5. [题解] Atcoder ABC 225 H Social Distance 2 生成函数,分治FFT

    题目 首先还没有安排座位的\(m-k\)个人之间是有顺序的,所以先把答案乘上\((m-k)!\),就可以把这些人看作不可区分的. 已经确定的k个人把所有座位分成了k+1段.对于第i段,如果我们能求出这 ...

  6. LA6886 Golf Bot(FFT)

    题目 Source https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page= ...

  7. Codeforces 528D Fuzzy Search(FFT)

    题目 Source http://codeforces.com/problemset/problem/528/D Description Leonid works for a small and pr ...

  8. LA4671 K-neighbor substrings(FFT + 字符串Hash)

    题目 Source http://acm.hust.edu.cn/vjudge/problem/19225 Description The Hamming distance between two s ...

  9. hdu 5885 FFT

    XM Reserves Time Limit: 10000/10000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)T ...

随机推荐

  1. VS2017无法进入断点调试且移动到breakpoint上的时候报错“breakpoint will not currently be hit. the source code is different from original version. ”

    我尝试了网上的很多其他办法也翻阅了很多外网资源,这些方法并不能解决我的问题 当然我非常震惊正当我尝试着在stack overflow上发表评论交流一下究竟如何解决的时候,却发现有方法灵验了 ,但是每个 ...

  2. js中函数声明先提升还是变量先提升

    根据官方书籍<你不知道的javascript>(上卷)中写道: "函数会首先被提升,然后才是变量". 例子: console.log(foo); function fo ...

  3. 域名与IP地址的联系与区别

    我们也知道每一台机都有一个唯一ip地址, 特别难记,所以出现了今天的DNS(域名) 当我们的计算机想要和一个远程机器连接时,我们可以申请连接该机器ip地址下的DNS,例如:www.baidu.com. ...

  4. 上传高德地图-express框架

    1.首先要注册高德地图,完后成为开发者 2.控制台里获取自己的key值 3.在要显示地图的页面添加如下的代码 <script type="text/javascript" s ...

  5. linux 链接的使用 创建和删除符号连接

    1 . 使用方式 :ln [option] source_file dist_file                     -f 建立时,将同档案名删除.                     ...

  6. 如何在SAP云平台上使用MongoDB服务

    首先按照我这篇文章在SAP云平台上给您的账号分配MongboDB服务:如何在SAP云平台的Cloud Foundry环境下添加新的Service 然后从这个链接下载SAP提供的例子程序. 1. 使用命 ...

  7. vuejs课程简介及框架简介

    vuejs准备知识: 1.前端开发基础 html css js 2.前端模块化基础 3.对es6有初步的了解   vuejs是一种轻量级的MVM框架,他吸收了react和angular的优点,强调re ...

  8. samba性能调优,调优后,性能增加30%

    global中增加下面内容. [global]    use sendfile = yes    write raw = yes    read raw = yes    max xmit = 655 ...

  9. N-gram的原理、用途和研究

    N-gram的原理.用途和研究 N-gram的基本原理 转自:http://blog.sciencenet.cn/blog-713101-797384.html N-gram是计算机语言学和概率论范畴 ...

  10. JavaScript获取时间戳与时间戳转化

    第一种方法(精确到秒): var timestamp1 = Date.parse( new Date()); 第二种方法(精确到毫秒): var timestamp2 = ( new Date()). ...