题意:

有一个\(N \times N\)的方阵,第\(x\)行第\(y\)列有\(C_{x,y}\)个点\((0 \leq C_{x,y} \leq 9)\)。

任选两个不同的点,求两点欧几里德距离的均值(或期望)。

然后按距离从小到大输出该距离的平方\(d_i\)和对应的点对数目\(c_i\)。

分析:

首先要化二维为一维,一般来讲给点\((x,y)\)编号\(x \times N+y(0\leq x, y < N)\)。

这里为了区分行和列从而方便计算距离,按照\(x \times 2N + y\)的方式给点编号。

这样对于两个点\((x_1,y_1)\)和\((x_2, y_2)\),对应编号分别为\(id_1 = x_1 \times 2N + y_1\)和\(id_2 = x_2 \times 2N + y_2(id_1 < id_2)\)。

两点之间的行距\(dx=\left \lceil \frac{id_1 - id_2 + N}{2} \right \rceil\)

两点之间的列距\(dy=\left | id_1 - id_2 -dx\times 2N \right |\)

然后用\(FFT\)计算两个多项式:

\[P(x)=\sum C_{i,j}x^{id_{i,j}}
\]

\[Q(x)=\sum C_{i,j}x^{-id_{i,j}}
\]

的乘积。

距离为\(0\)的点对注意去重或者单独计算。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <complex>
using namespace std; const double PI = acos(-1.0);
typedef long long LL;
typedef complex<double> Complex; void FFT(Complex* P, int n, int op) {
for(int i = 1, j = 0; i < n - 1; i++) {
for(int s = n; j ^= s >>= 1, ~j&s; );
if(i < j) swap(P[i], P[j]);
}
int log = 0;
while((1 << log) < n) log++;
for(int s = 0; s < log; s++) {
int m = 1 << s;
int m2 = m << 1;
Complex wm(cos(PI / m), sin(PI / m) * op);
for(int i = 0; i < n; i += m2) {
Complex w(1, 0);
for(int j = 0; j < m; j++, w *= wm) {
Complex u = P[i + j];
Complex t = P[i + j + m] * w;
P[i + j] = u + t;
P[i + j + m] = u - t;
}
}
}
if(op == -1) for(int i = 0; i < n; i++) P[i].real(P[i].real() / n);
} Complex P[2][1 << 22]; int n; LL cnt[2100000]; double dist(double x, double y) {
return sqrt(x * x + y * y);
} int main()
{
scanf("%d", &n);
int sum = 0;
int offset = (n - 1) * (n * 2 + 1);
for(int i = 0; i < n; i++) {
for(int j = 0; j < n; j++) {
int x; scanf("%d", &x);
sum += x;
cnt[0] += (x - 1) * x / 2;
int id = i * 2 * n + j;
P[0][id] = x;
P[1][offset-id] = x;
}
} int s = 1;
while(s < offset * 2 + 1) s <<= 1;
FFT(P[0], s, 1); FFT(P[1], s, 1);
for(int i = 0; i < s; i++) P[0][i] *= P[1][i];
FFT(P[0], s, -1); double ans = 0;
for(int i = 1; i <= offset; i++) {
LL t = (LL)(P[0][offset + i].real() + 0.5);
if(!t) continue;
int dx = ((i / n) + 1) >> 1;
int dy = abs(i - dx * n * 2);
ans += dist(dx, dy) * t;
cnt[dx*dx+dy*dy] += t;
} ans /= (double)sum * (sum - 1) / 2;
printf("%.10f\n", ans); int num = 0; int top = (n - 1) * (n - 1) * 2;
for(int i = 0; i <= top && num < 10000; i++) if(cnt[i]) {
printf("%d %lld\n", i, cnt[i]);
num++;
} return 0;
}

Aizu 2560 Point Distance FFT的更多相关文章

  1. AIZU 2560 [想法题]

    表示敲完多项式乘法&高精度乘法两道FFT模板题后就开始来磕这题了 这题相对而言应该不算模板题 不过神犇们肯定还是一眼看穿 如果原OJ访问速度较慢的话可以考虑戳这里 http://acm.hus ...

  2. CodeChef - PRIMEDST Prime Distance On Tree 树分治 + FFT

    Prime Distance On Tree Problem description. You are given a tree. If we select 2 distinct nodes unif ...

  3. codechef Prime Distance On Tree(树分治+FFT)

    题目链接:http://www.codechef.com/problems/PRIMEDST/ 题意:给出一棵树,边长度都是1.每次任意取出两个点(u,v),他们之间的长度为素数的概率为多大? 树分治 ...

  4. prime distance on a tree(点分治+fft)

    最裸的点分治+fft,调了好久,太菜了.... #include<iostream> #include<cstring> #include<cstdio> #inc ...

  5. [题解] Atcoder ABC 225 H Social Distance 2 生成函数,分治FFT

    题目 首先还没有安排座位的\(m-k\)个人之间是有顺序的,所以先把答案乘上\((m-k)!\),就可以把这些人看作不可区分的. 已经确定的k个人把所有座位分成了k+1段.对于第i段,如果我们能求出这 ...

  6. LA6886 Golf Bot(FFT)

    题目 Source https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page= ...

  7. Codeforces 528D Fuzzy Search(FFT)

    题目 Source http://codeforces.com/problemset/problem/528/D Description Leonid works for a small and pr ...

  8. LA4671 K-neighbor substrings(FFT + 字符串Hash)

    题目 Source http://acm.hust.edu.cn/vjudge/problem/19225 Description The Hamming distance between two s ...

  9. hdu 5885 FFT

    XM Reserves Time Limit: 10000/10000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)T ...

随机推荐

  1. 解决Maven依赖下载不全的问题

    背景描述 在日常学习过程中使用Maven构建SpringBoot+SpringCloud服务时,有时会使用非正式版的SpringBoot和SpringCloud(非正式版是指不是最终发布的版本,而是测 ...

  2. 如何下载最新的固件到Pixhawk

    连接Pixhawk至电脑 当Mission Planner 已经安装至你的电脑上,使用micro USB数据线连接pixhawk到您的计算机上. 使用一个USB端口直接在您的计算机上,不要用USB集线 ...

  3. js之BOM和DOM

      今天我们来学习js中的一些基础的操作. 一.BOM对象 BOM(浏览器对象模型),可以对浏览器窗口进行访问和操作.使用 BOM,开发者可以移动窗口.改变状态栏中的文本以及执行其他与页面内容不直接相 ...

  4. aar、jar、so的引入和aar打包包含so、aar、jar文件

    so依赖   1,先建本地仓库,指向so放置的目录

  5. 逐步解读String类(一)

    一句题外话 面试刚入行的Java新手,侧重基础知识:面试有多年工作经验的老鸟,多侧重对具体问题的解决策略. 从一类面试题说起 考察刚入行菜鸟对基础知识的掌握程度,面试官提出关于String类的内容挺常 ...

  6. java核心技术 要点笔记3

    1.类,超类和子类 2.Object:所有类的超类 3.泛型数组列表 4.对象包装器和自动装箱 5.参数数量可变的方法 6.枚举类 7.反射 8.继承设计的技巧

  7. Hybris UI的Route(路由)实现

    登录Hybris前台,在product catalog里选择Digital camera: 点击某个产品进入明细页面: 注意产品明细这个url: 这个明细页面的路由和SAP UI5的路由思路很像. 在 ...

  8. Angular4中常用管道

    通常我们需要使用管道实现对数据的格式化,Angular4中的管道和之前有了一些变化,下面说一些常用的管道. 一.大小写转换管道 uppercase将字符串转换为大写 lowercase将字符串转换为小 ...

  9. 查看数据库表存储引擎MyISAM/InnoDB

    Mysql: show table status *MyISAM不支持PDO的事务

  10. 输出流缓冲的意义 何时缓冲 Stdout Buffering

    From : https://eklitzke.org/stdout-buffering 译者:李秋豪 大多数编程语言默认提供了i/o缓冲特性,因为这会使得输出更加有效率.这些缓冲功能大都是默默工作& ...