P2485 [SDOI2011]计算器
P2485 [SDOI2011]计算器
题目描述
你被要求设计一个计算器完成以下三项任务:
1、给定y、z、p,计算y^z mod p 的值;
2、给定y、z、p,计算满足xy ≡z(mod p)的最小非负整数x;
3、给定y、z、p,计算满足y^x ≡z(mod p)的最小非负整数x。
为了拿到奖品,全力以赴吧!
输入输出格式
输入格式:
输入文件calc.in 包含多组数据。
第一行包含两个正整数T、L,分别表示数据组数和询问类型(对于一个测试点内的所有数
据,询问类型相同)。
以下T 行每行包含三个正整数y、z、p,描述一个询问。
输出格式:
输出文件calc.out 包括T 行.
对于每个询问,输出一行答案。
对于询问类型2 和3,如果不存在满足条件的,则输出“Orz, I cannot find x!”。
输入输出样例
3 1
2 1 3
2 2 3
2 3 3
2
1
2
3 2
2 1 3
2 2 3
2 3 3
2
1
0
4 3
2 1 3
2 2 3
2 3 3
2 4 3
0
1
Orz, I cannot find x!
0
说明

分析
三个模板,
- 快速幂,
- 求yx=z(mod p),转化成,yx-kp = z;可以用扩展欧几里得求解,并且要求z%gcd(y,p)!=0,(扩展欧几里得求ax+by=c:http://www.cnblogs.com/MashiroSky/p/5912977.html), 补充:因为p是质数,所以可以用费马小定理, p是质数,y与p互质,所以y有逆元,x=y^(-1)*z,y^(-1)=y^(p-2),因为0没有逆元,所以只有y=0时无解
- bsgs
注意,int与longlong类型,结尾的换行符
code
#include<iostream>
#include<cstdio>
#include<map>
#include<cmath> using namespace std;
typedef long long LL;
map<int,int>mp; int ksm(int a,int p,int mod)
{
int now = ;
while (p)
{
if (p&)
now = 1ll*now*a%mod;
a = 1ll*a*a%mod;
p = p>>;
}
return now;
}
int exgcd(int a,int b,int &x,int &y)
{
if (b==)
{
x = , y = ;
return a;
}
int r = exgcd(b,a%b,x,y);
int t = x;
x = y;
y = t-(a/b)*y;
return r;
}
void bsgs(int a,int b,int p)
{
int m,t,ans,now;
if (a%p==&&b==)
{
printf("1\n");return ;
}
if (a%p==)
{
printf("Orz, I cannot find x!\n");return ;
}
mp.clear();
m = ceil(sqrt(p));
now = b%p;
mp[now] = ;
for (int i=; i<=m; ++i)
{
now = (1ll*now*a)%p;
mp[now] = i;
}
t = ksm(a,m,p);
now = ;
for (int i=; i<=m; ++i)
{
now = (1ll*now*t)%p;
if (mp[now])
{
ans = i*m-mp[now];
printf("%d\n",(ans%p+p)%p);
return ;
}
}
printf("Orz, I cannot find x!\n");
}
int main()
{
int t,k,a,b,c;
scanf("%d%d",&t,&k);
if (k==)
{
for (int i=; i<=t; ++i)
scanf("%d%d%d",&a,&b,&c),printf("%d\n",ksm(a,b,c));
}
else if (k==)
{
int x,y;
for (int i=; i<=t; ++i)
{
scanf("%d%d%d",&a,&b,&c);
int d = exgcd(a,c,x,y);
if (b%d!=) printf("Orz, I cannot find x!\n"); //换行符
else
{
x = 1ll*x*(b/d)%c;
x = (x%(c/d)+c/d)%(c/d);
printf("%d\n",x);
}
}
}
else
{
for (int i=; i<=t; ++i)
scanf("%d%d%d",&a,&b,&c),bsgs(a,b,c);
}
return ;
}
P2485 [SDOI2011]计算器的更多相关文章
- 洛谷 P2485 [SDOI2011]计算器 解题报告
P2485 [SDOI2011]计算器 题目描述 你被要求设计一个计算器完成以下三项任务: 1.给定y.z.p,计算y^z mod p 的值: 2.给定y.z.p,计算满足xy ≡z(mod p)的最 ...
- luogu P2485 [SDOI2011]计算器
题目描述 你被要求设计一个计算器完成以下三项任务: 1.给定y.z.p,计算y^z mod p 的值: 2.给定y.z.p,计算满足xy ≡z(mod p)的最小非负整数x: 3.给定y.z.p,计算 ...
- 洛谷P2485 [SDOI2011]计算器(exgcd+BSGS)
传送门 一题更比三题强 1操作直接裸的快速幂 2操作用exgcd求出最小正整数解 3操作用BSGS硬上 然后没有然后了 //minamoto #include<cstdio> #inclu ...
- BZOJ 2242 / Luogu P2485 [SDOI2011]计算器 (BSGS)
type 1type\ 1type 1 就直接快速幂 type 2type\ 2type 2 特判+求逆元就行了. type 3type\ 3type 3 BSGS板 CODE #include< ...
- bzoj 2242: [SDOI2011]计算器 BSGS+快速幂+扩展欧几里德
2242: [SDOI2011]计算器 Time Limit: 10 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description 你被 ...
- BZOJ 2242: [SDOI2011]计算器( 快速幂 + 扩展欧几里德 + BSGS )
没什么好说的... --------------------------------------------------------------------- #include<cstdio&g ...
- BZOJ 2242: [SDOI2011]计算器 [快速幂 BSGS]
2242: [SDOI2011]计算器 题意:求\(a^b \mod p,\ ax \equiv b \mod p,\ a^x \equiv b \mod p\),p是质数 这种裸题我竟然WA了好多次 ...
- BZOJ_2242_[SDOI2011]计算器_快速幂+扩展GCD+BSGS
BZOJ_2242_[SDOI2011]计算器_快速幂+扩展GCD+BSGS 题意: 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p, ...
- 【bzoj2242】[SDOI2011]计算器
2242: [SDOI2011]计算器 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 3207 Solved: 1258[Submit][Statu ...
随机推荐
- 移植mavlink协议到STM32详细教程
1准备材料, 首先准备一个带串口的stm32程序(这里选用整点原子的官方串口例程这里自己去找不讲)作者:恒久力行 QQ:624668529,然后去mavlink官网下载mavlink源码,这里重点讲解 ...
- Nginx 安装(CentOS )非yum安装
Nginx 安装(CentOS ) 一.安装编译工具及库文件 yum -y install make zlib zlib-devel gcc-c++ libtool openssl openssl-d ...
- POJ3233Matrix Power Series(矩阵快速幂)
题意 题目链接 给出$n \times n$的矩阵$A$,求$\sum_{i = 1}^k A^i $,每个元素对$m$取模 Sol 考虑直接分治 当$k$为奇数时 $\sum_{i = 1}^k A ...
- Vue打包后页面出现cannot get
学习Vue有大半个月了,然而遇到了不少坑,完全没有高手们那么容易,中间有不少值得记录下的东东,回头好好理理.先理下今天的: Vue打包命令简单啊,直接在命令行输入:npm run build 然而没一 ...
- 关于win10上安装.Net Framework3.5的解决办法
1.首先下载. NET Framework 3.5的安装包,格式为cba格式; 2.将下载下来的NetFx3.cab 放进 C:\Windows 目录下; 3.打开控制面板->程序->启动 ...
- 解决windows7系统的快捷方式无法添加到任务栏
#以下4条,进入cmd命令界面下逐个执行cmd /k reg add "HKEY_CLASSES_ROOT\lnkfile" /v IsShortcut /fcmd /k reg ...
- 论overflow滚动的重要性
原理 设置一个块级作用域溢出的效果,只需要在外部块的位置上设置overflow:scroll和height:xx即可. 此时,块级作用域的内容位移超出外部块的位移就会出现滚动条,当内部块滚动时,我们能 ...
- 实现带复选框的TreeView控件
实现效果: 知识运用: TreeView控件的CheckView属性 //是否在树形视图控件中显示复选框 public bool CheckBoxs{ get;ser } 实现代码: TreeView ...
- Spring Cloud学习介绍
最近在学spring cloud, 整理了下 简单知识要求: 1.要了解springboot 2.了解分布式架构 3.了解微服务 4.了解springcloud是做什么的 带着这些,初学者 就至少有个 ...
- Java 替换word文档文字,指定位置插入图片
先说下 需要的依赖包 <dependency> <groupId>org.apache.poi</groupId> <artifactId>poi-ex ...