Strongly connected

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 1828    Accepted Submission(s): 752

Problem Description
Give a simple directed graph with N nodes and M edges. Please tell me the maximum number of the edges you can add that the graph is still a simple directed graph. Also, after you add these edges, this graph must NOT be strongly connected.

A simple directed graph is a directed graph having no multiple edges or graph loops.

A strongly connected digraph is a directed graph in which it is possible to reach any node starting from any other node by traversing edges in the direction(s) in which they point.

 
Input
The first line of date is an integer T, which is the number of the text cases.

Then T cases follow, each case starts of two numbers N and M, 1<=N<=100000, 1<=M<=100000, representing the number of nodes and the number of edges, then M lines follow. Each line contains two integers x and y, means that there is a edge from x to y.
 
Output
For each case, you should output the maximum number of the edges you can add.

If the original graph is strongly connected, just output -1.
 
Sample Input
3
3 3
1 2
2 3
3 1
3 3
1 2
2 3
1 3
6 6
1 2
2 3
3 1
4 5
5 6
6 4
 
Sample Output
Case 1: -1
Case 2: 1
Case 3: 15
 
Source
题意:给一个n个点的简单有向图,问最多能加多少条边使得该图仍然是简单有向图,且不是强连通图。简单有向图定义:没有重边。无自环。 强连通图:整个图缩点后就仅仅有一个点。里面包括n个原点,也就是一个连通分量。

假设一開始就是一个强连通图。则输出-1。

解题:要加边最多那么加边后的图连通分量越少越好,那么连通分量最少也就是2个。先用n个点构造一个全然图(有向图有:n*(n-1)条边,无向图有:n*(n-1)/2条边)。再用构造的边 减去原来有的m条边=ans。再用强连通算法缩点。记录每一个新点包括点的个数,从入度为0或出度为0的新点中找出包括点数最小的minnum,再用上面剩余的边ans - minnum*(n-minnum)就是所要的答案。

由于假设不减入度为0或出度为0相关的边,那么该点本身包括有入边和出边。加的边永远都是强连通图。所以仅仅能去掉与入度为0或出度为0点的相关边,仅仅减掉一个方向的边,要么全是(n-minnum)点数到minnum点数的入边,那么是minnum点数到(n-minnum)点数的出边。

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define ll __int64
const int N = 100005;
struct EDG{
int to,next;
}edg[N];
int eid,head[N];
int low[N],dfn[N],vist[N],num[N],id[N],deep,stack1[N],tn,top;
int in[N],out[N]; void init(){
eid=tn=top=deep=0;
memset(head,-1,sizeof(head));
memset(vist,0,sizeof(vist));
memset(in,0,sizeof(in));
memset(out,0,sizeof(out));
memset(num,0,sizeof(num));
}
void addEdg(int u,int v){
edg[eid].to=v; edg[eid].next=head[u]; head[u]=eid++;
}
void tarjer(int u){
stack1[++top]=u;
vist[u]=1;
deep++;
low[u]=dfn[u]=deep;
for(int i=head[u]; i!=-1; i=edg[i].next){
int v=edg[i].to;
if(vist[v]==0){
vist[v]=1;
tarjer(v);
low[u]=min(low[u],low[v]);
}
else if(vist[v]==1)
low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u]){
tn++;
do{
vist[stack1[top]]=2;
num[tn]++;
id[stack1[top]]=tn;
}while(stack1[top--]!=u); }
}
ll solve(int n,int m){
ll ans=n*(n-1)-m;
int minnum=N;
for(int i=1; i<=n; i++)
if(vist[i]==0)
tarjer(i);
if(tn==1) return -1;
for(int u=1; u<=n; u++)
for(int i=head[u]; i!=-1; i=edg[i].next){
int v=edg[i].to;
if(id[u]!=id[v])
in[id[v]]++,out[id[u]]++;
}
for(int i=1; i<=tn; i++)
if(in[i]==0||out[i]==0){
minnum=min(minnum,num[i]);
}
ans-=minnum*(n-minnum); return ans;
}
int main(){
int T,n,m,c=0,a,b;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
init();
for(int i=1; i<=m; i++)
{
scanf("%d%d",&a,&b);
addEdg(a,b);
}
printf("Case %d: %I64d\n",++c,solve(n,m));
}
}

HDU 4635 Strongly connected(强连通)经典的更多相关文章

  1. hdu 4635 Strongly connected 强连通缩点

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4635 题意:给你一个n个点m条边的图,问在图不是强连通图的情况下,最多可以向图中添多少条边,若图为原来 ...

  2. HDU 4635 Strongly connected (强连通分量)

    题意 给定一个N个点M条边的简单图,求最多能加几条边,使得这个图仍然不是一个强连通图. 思路 2013多校第四场1004题.和官方题解思路一样,就直接贴了~ 最终添加完边的图,肯定可以分成两个部X和Y ...

  3. hdu 4635 Strongly connected 强连通

    题目链接 给一个有向图, 问你最多可以加多少条边, 使得加完边后的图不是一个强连通图. 只做过加多少条边变成强连通的, 一下子就懵逼了 我们可以反过来想. 最后的图不是强连通, 那么我们一定可以将它分 ...

  4. HDU 4635 Strongly connected (强连通分量+缩点)

    <题目链接> 题目大意: 给你一张有向图,问在保证该图不能成为强连通图的条件下,最多能够添加几条有向边. 解题分析: 我们从反面思考,在该图是一张有向完全图的情况下,最少删去几条边能够使其 ...

  5. HDU 4635 —— Strongly connected——————【 强连通、最多加多少边仍不强连通】

    Strongly connected Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u ...

  6. HDU 4635 Strongly connected (2013多校4 1004 有向图的强连通分量)

    Strongly connected Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  7. HDU 4635 Strongly connected (Tarjan+一点数学分析)

    Strongly connected Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) ...

  8. hdu 4635 Strongly connected(强连通)

    考强连通缩点,算模板题吧,比赛的时候又想多了,大概是不自信吧,才开始认真搞图论,把题目想复杂了. 题意就是给你任意图,保证是simple directed graph,问最多加多少条边能使图仍然是si ...

  9. HDU 4635 Strongly connected(强连通分量,变形)

    题意:给出一个有向图(不一定连通),问最多可添加多少条边而该图仍然没有强连通. 思路: 强连通分量必须先求出,每个强连通分量包含有几个点也需要知道,每个点只会属于1个强连通分量. 在使图不强连通的前提 ...

随机推荐

  1. maven项目打包jar,含有依赖jar

    在pom文件中添加一下插件 <plugin> <artifactId>maven-assembly-plugin</artifactId> <configur ...

  2. 静态方法,Arrays类,二维数组

    一.静态方法 静态方法属于类的,可以直接使用类名.方法名()调用. 静态方法的声明 访问修饰符 static 类型 方法名(参数列表) { //方法体 } 方法的作用:一个程序分解成几个方法,有利于快 ...

  3. js的编码函数

    js对文字进行编码,涉及3个函数:escape,encodeURI,encodeURIComponent,相应3个解码函数:unescape,decodeURI,decodeURIComponent ...

  4. iOS开发,最新判断是否是手机号的正则表达式

    最近项目里需要判断是否为手机号并发送验证码的功能,一下是实现方法.不过这个方法还是有些不足,只能判断输入的11位数的号段是否正确,无法判断手机号是否存在.不过勉强可以使用! + (NSString * ...

  5. 【bzoj2338】[HNOI2011]数矩形 计算几何

    题目描述 题解 计算几何 由于对角线平分且相等的四边形是矩形,因此我们可以把每条对角线存起来,按照对角线长度和中点位置为关键字排序,这样对于每个相同长度和中点的对角线就排到了一起. 于是对于每段可能形 ...

  6. hihoCoder #1161 八卦的小冰

    题目大意 考虑一个由 $n$ 个人构成的社交网络,其中任意两人都有一个用非负整数表示的亲密度. 初始时给出 $m$ 对人的亲密度,其余的亲密度为 $0$ . 定义此社交网络的「八卦度」为异性之间的亲密 ...

  7. 刷题总结——骑士的旅行(bzoj4336 树链剖分套权值线段树)

    题目: Description 在一片古老的土地上,有一个繁荣的文明. 这片大地几乎被森林覆盖,有N座城坐落其中.巧合的是,这N座城由恰好N-1条双 向道路连接起来,使得任意两座城都是连通的.也就是说 ...

  8. 使用router.push()进行页面跳转的问题

    看着官网的文档直接router.push()这样会报错router undefind,需要写成this.$router.push()才可以

  9. Entity Framework表名默认自动变为复数形式等常见问题解决方法

    今天使用了一下手写EntityFramework,发现一些常见的问题,做个记录: 1.以前使用模板生成不太在意的问题,就是在定义实体类时,如果没映射注释,自动映射的表名会变成复数形式 如:表名==&g ...

  10. C#中DataTable中Rows.Add 和 ImportRow 对比

    最近参加项目中,数据操作基本都是用DataTable的操作,老代码中有些地方用到DataTable.Rows.Add又有些代码用的DataTable.ImportRow,于是就对比了一下 VS查询说明 ...