HDU 4635 Strongly connected(强连通)经典
Strongly connected
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1828 Accepted Submission(s): 752
A simple directed graph is a directed graph having no multiple edges or graph loops.
A strongly connected digraph is a directed graph in which it is possible to reach any node starting from any other node by traversing edges in the direction(s) in which they point.
Then T cases follow, each case starts of two numbers N and M, 1<=N<=100000, 1<=M<=100000, representing the number of nodes and the number of edges, then M lines follow. Each line contains two integers x and y, means that there is a edge from x to y.
If the original graph is strongly connected, just output -1.
3
3 3
1 2
2 3
3 1
3 3
1 2
2 3
1 3
6 6
1 2
2 3
3 1
4 5
5 6
6 4
Case 1: -1
Case 2: 1
Case 3: 15
假设一開始就是一个强连通图。则输出-1。
由于假设不减入度为0或出度为0相关的边,那么该点本身包括有入边和出边。加的边永远都是强连通图。所以仅仅能去掉与入度为0或出度为0点的相关边,仅仅减掉一个方向的边,要么全是(n-minnum)点数到minnum点数的入边,那么是minnum点数到(n-minnum)点数的出边。
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define ll __int64
const int N = 100005;
struct EDG{
int to,next;
}edg[N];
int eid,head[N];
int low[N],dfn[N],vist[N],num[N],id[N],deep,stack1[N],tn,top;
int in[N],out[N]; void init(){
eid=tn=top=deep=0;
memset(head,-1,sizeof(head));
memset(vist,0,sizeof(vist));
memset(in,0,sizeof(in));
memset(out,0,sizeof(out));
memset(num,0,sizeof(num));
}
void addEdg(int u,int v){
edg[eid].to=v; edg[eid].next=head[u]; head[u]=eid++;
}
void tarjer(int u){
stack1[++top]=u;
vist[u]=1;
deep++;
low[u]=dfn[u]=deep;
for(int i=head[u]; i!=-1; i=edg[i].next){
int v=edg[i].to;
if(vist[v]==0){
vist[v]=1;
tarjer(v);
low[u]=min(low[u],low[v]);
}
else if(vist[v]==1)
low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u]){
tn++;
do{
vist[stack1[top]]=2;
num[tn]++;
id[stack1[top]]=tn;
}while(stack1[top--]!=u); }
}
ll solve(int n,int m){
ll ans=n*(n-1)-m;
int minnum=N;
for(int i=1; i<=n; i++)
if(vist[i]==0)
tarjer(i);
if(tn==1) return -1;
for(int u=1; u<=n; u++)
for(int i=head[u]; i!=-1; i=edg[i].next){
int v=edg[i].to;
if(id[u]!=id[v])
in[id[v]]++,out[id[u]]++;
}
for(int i=1; i<=tn; i++)
if(in[i]==0||out[i]==0){
minnum=min(minnum,num[i]);
}
ans-=minnum*(n-minnum); return ans;
}
int main(){
int T,n,m,c=0,a,b;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
init();
for(int i=1; i<=m; i++)
{
scanf("%d%d",&a,&b);
addEdg(a,b);
}
printf("Case %d: %I64d\n",++c,solve(n,m));
}
}
HDU 4635 Strongly connected(强连通)经典的更多相关文章
- hdu 4635 Strongly connected 强连通缩点
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4635 题意:给你一个n个点m条边的图,问在图不是强连通图的情况下,最多可以向图中添多少条边,若图为原来 ...
- HDU 4635 Strongly connected (强连通分量)
题意 给定一个N个点M条边的简单图,求最多能加几条边,使得这个图仍然不是一个强连通图. 思路 2013多校第四场1004题.和官方题解思路一样,就直接贴了~ 最终添加完边的图,肯定可以分成两个部X和Y ...
- hdu 4635 Strongly connected 强连通
题目链接 给一个有向图, 问你最多可以加多少条边, 使得加完边后的图不是一个强连通图. 只做过加多少条边变成强连通的, 一下子就懵逼了 我们可以反过来想. 最后的图不是强连通, 那么我们一定可以将它分 ...
- HDU 4635 Strongly connected (强连通分量+缩点)
<题目链接> 题目大意: 给你一张有向图,问在保证该图不能成为强连通图的条件下,最多能够添加几条有向边. 解题分析: 我们从反面思考,在该图是一张有向完全图的情况下,最少删去几条边能够使其 ...
- HDU 4635 —— Strongly connected——————【 强连通、最多加多少边仍不强连通】
Strongly connected Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u ...
- HDU 4635 Strongly connected (2013多校4 1004 有向图的强连通分量)
Strongly connected Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- HDU 4635 Strongly connected (Tarjan+一点数学分析)
Strongly connected Time Limit : 2000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other) ...
- hdu 4635 Strongly connected(强连通)
考强连通缩点,算模板题吧,比赛的时候又想多了,大概是不自信吧,才开始认真搞图论,把题目想复杂了. 题意就是给你任意图,保证是simple directed graph,问最多加多少条边能使图仍然是si ...
- HDU 4635 Strongly connected(强连通分量,变形)
题意:给出一个有向图(不一定连通),问最多可添加多少条边而该图仍然没有强连通. 思路: 强连通分量必须先求出,每个强连通分量包含有几个点也需要知道,每个点只会属于1个强连通分量. 在使图不强连通的前提 ...
随机推荐
- FastText 介绍
FastText 介绍 在面试百度的NLP工程师时,被问及常用的词向量表示学习方法有哪些,我说知道word2vec,然后大佬又问我知道FastText么... 这就很尴尬了,不会! 不同于word2v ...
- PHPStorm.WebStrom等系列官方开发工具配置本地项目与运程服务器同步
PHPStorm.WebStrom配置本地项目与运程服务器同步 说明:PHPStorm.WebStrom等官方的系统开发工具配置本地项目与运程服务器同步的方法都基本一致没有,几乎没有什么不同之处,我们 ...
- 只用css3实现菜单的toggle效果
一.原理: 使用label与input来实现,label和复选框是有关联的,label的for属性对应的是input的id,所以点击label时,它就会勾选或取消复选框. 如果我们需要让菜单默认显示, ...
- 刷题总结——(一道很妙的题)Resistance(ssoj 欧几里得 )
题解: 题目背景 151006 T1 题目描述 Picks 喜欢电路.这天他在研究元电路的时候,需要一个阻值为 (p/q)Ω 的电阻,然而他家中只有一大堆电阻为 1Ω 电阻.由于技术问题,Picks ...
- C#中DataTable中Rows.Add 和 ImportRow 对比
最近参加项目中,数据操作基本都是用DataTable的操作,老代码中有些地方用到DataTable.Rows.Add又有些代码用的DataTable.ImportRow,于是就对比了一下 VS查询说明 ...
- bzoj 4311 向量 时间线建线段树+凸包+三分
题目大意 你要维护一个向量集合,支持以下操作: 1.插入一个向量(x,y) 2.删除插入的第i个向量 3.查询当前集合与(x,y)点积的最大值是多少.如果当前是空集输出0 分析 按时间线建线段树 大致 ...
- hdu 2857 点在直线上的投影+直线的交点
Mirror and Light Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- poj 2379 Sum of Consecutive Prime Numbers
...
- 基于promise和script标签的jsonp
function Jsonp(url){ var url=url.indexOf('?')>-1?url+"&callback=callback":url+" ...
- gcc 编译时 库链接
gcc -l参数和-L参数 -l参数就是用来指定程序要链接的库,-l参数紧接着就是库名,那么库名跟真正的库文件名有什么关系呢?就拿数学库来说,他的库名是m,他的库文件名是libm.so,很容易看出,把 ...