Spark的持久化简记
摘要:
1.spark 提供的持久化方法
2.Spark的持久化级别
3.如何选择一种最合适的持久化策略
内容:
1.spark 提供的持久化方法
如果要对一个RDD进行持久化,只要对这个RDD调用cache()和persist()即可。
在第二次计算RDD是就不用再重新计算了,从而提高spark作业效率
对于persist()方法而言,我们可以根据不同的业务场景选择不同的持久化级别。
2.Spark的持久化级别
| 持久化级别 | 含义解释 |
|---|---|
| MEMORY_ONLY | 使用未序列化的Java对象格式,将数据保存在内存中。如果内存不够存放所有的数据,则数据可能就不会进行持久化。那么下次对这个RDD执行算子操作时,那些没有被持久化的数据,需要从源头处重新计算一遍。这是默认的持久化策略,使用cache()方法时,实际就是使用的这种持久化策略。 |
| MEMORY_AND_DISK | 使用未序列化的Java对象格式,优先尝试将数据保存在内存中。如果内存不够存放所有的数据,会将数据写入磁盘文件中,下次对这个RDD执行算子时,持久化在磁盘文件中的数据会被读取出来使用。 |
| MEMORY_ONLY_SER | 基本含义同MEMORY_ONLY。唯一的区别是,会将RDD中的数据进行序列化,RDD的每个partition会被序列化成一个字节数组。这种方式更加节省内存,从而可以避免持久化的数据占用过多内存导致频繁GC。 |
| MEMORY_AND_DISK_SER | 基本含义同MEMORY_AND_DISK。唯一的区别是,会将RDD中的数据进行序列化,RDD的每个partition会被序列化成一个字节数组。这种方式更加节省内存,从而可以避免持久化的数据占用过多内存导致频繁GC。 |
| DISK_ONLY | 使用未序列化的Java对象格式,将数据全部写入磁盘文件中。 |
| MEMORY_ONLY_2, MEMORY_AND_DISK_2, 等等. | 对于上述任意一种持久化策略,如果加上后缀_2,代表的是将每个持久化的数据,都复制一份副本,并将副本保存到其他节点上。这种基于副本的持久化机制主要用于进行容错。假如某个节点挂掉,节点的内存或磁盘中的持久化数据丢失了,那么后续对RDD计算时还可以使用该数据在其他节点上的副本。如果没有副本的话,就只能将这些数据从源头处重新计算一遍了。 |
3.如何选择一种最合适的持久化策略
默认情况下,性能最高的当然是MEMORY_ONLY,但前提是你的内存必须足够足够大,可以绰绰有余地存放下整个RDD的所有数据。因为不进行序列化与反序列化操作,就避免了这部分的性能开销;对这个RDD的后续算子操作,都是基于纯内存中的数据的操作,不需要从磁盘文件中读取数据,性能也很高;而且不需要复制一份数据副本,并远程传送到其他节点上。但是这里必须要注意的是,在实际的生产环境中,恐怕能够直接用这种策略的场景还是有限的,如果RDD中数据比较多时(比如几十亿),直接用这种持久化级别,会导致JVM的OOM内存溢出异常。
如果使用MEMORY_ONLY级别时发生了内存溢出,那么建议尝试使用MEMORY_ONLY_SER级别。该级别会将RDD数据序列化后再保存在内存中,此时每个partition仅仅是一个字节数组而已,大大减少了对象数量,并降低了内存占用。这种级别比MEMORY_ONLY多出来的性能开销,主要就是序列化与反序列化的开销。但是后续算子可以基于纯内存进行操作,因此性能总体还是比较高的。此外,可能发生的问题同上,如果RDD中的数据量过多的话,还是可能会导致OOM内存溢出的异常。
如果纯内存的级别都无法使用,那么建议使用MEMORY_AND_DISK_SER策略,而不是MEMORY_AND_DISK策略。因为既然到了这一步,就说明RDD的数据量很大,内存无法完全放下。序列化后的数据比较少,可以节省内存和磁盘的空间开销。同时该策略会优先尽量尝试将数据缓存在内存中,内存缓存不下才会写入磁盘。
通常不建议使用DISK_ONLY和后缀为_2的级别:因为完全基于磁盘文件进行数据的读写,会导致性能急剧降低,有时还不如重新计算一次所有RDD。后缀为_2的级别,必须将所有数据都复制一份副本,并发送到其他节点上,数据复制以及网络传输会导致较大的性能开销,除非是要求作业的高可用性,否则不建议使用。
总结:cache()就相当于presist(MEMORY_ONLY),可以通过序列化来减少空间占用,但是相应也会增加序列化反序列化开销
Spark的持久化简记的更多相关文章
- Spark RDD持久化、广播变量和累加器
Spark RDD持久化 RDD持久化工作原理 Spark非常重要的一个功能特性就是可以将RDD持久化在内存中.当对RDD执行持久化操作时,每个节点都会将自己操作的RDD的partition持久化到内 ...
- 【spark】持久化
Spark RDD 是惰性求值的. 如果简单地对RDD 调用行动操作,Spark 每次都会重算RDD 以及它的所有依赖.这在迭代算法中消耗格外大. 换句话来说就是 当DAG图遇到转化操作的时候是不求值 ...
- Spark RDD持久化说明
以上说明出自林大贵老师关于Hadoop.spark书籍,如有兴趣请自行搜索购买! 这是我的GitHub分享的一些笔记:https://github.com/mahailuo/pyspark_notes
- spark rdd持久化的简单对比
未使用rdd持久化 使用后 通过对比可以发现,未使用RDD持久化时,第一次计算比使用RDD持久化要快,但之后的计算显然要慢的多,差不多10倍的样子 代码 public class PersistRDD ...
- Spark中持久化和序列化学习
一.cache和persisit的对比 -rw-r--r--@ 1 hadoop staff 68M 5 17 07:04 access.log    cache/persitence是 laz ...
- Spark 学习总结
摘要: 1.spark_core 2.spark_sql 3.spark_ml 内容: 1.spark_core 原理篇: Spark RDD 核心总结 RangePartitioner 实现简记 S ...
- 【Spark调优】:RDD持久化策略
[场景] Spark对RDD执行一系列算子操作时,都会重新从头到尾计算一遍.如果中间结果RDD后续需要被被调用多次,可以显式调用 cache()和 persist(),以告知 Spark,临时保存之前 ...
- spark持久化
spark持久化:cache .persist.checkpoint 一.cache持久化 cache实际上是persist的一种简化方式,是一种懒执行的,执行action类算子才会触发,cahce后 ...
- Spark踩坑记——数据库(Hbase+Mysql)
[TOC] 前言 在使用Spark Streaming的过程中对于计算产生结果的进行持久化时,我们往往需要操作数据库,去统计或者改变一些值.最近一个实时消费者处理任务,在使用spark streami ...
随机推荐
- Python os模块介绍
os.getcwd() 获取当前工作目录,即当前python脚本工作的目录路径 os.chdir("dirname") 改变当前脚本工作目录:相当于shell下cd os.curd ...
- spring-data-redis 用法
- 用div加css做表格去掉外围边框
通过div做表格时想加上边框,并且想取点外围边框: <div class="cont"> <div class="row"> <a ...
- linux查看是什么操作系统是什么命令
https://zhidao.baidu.com/question/361519585968730492.html
- Mac 不能输入波浪线?
当你发现你的Mac或者mbp不能输入波浪线 , 输出的都是的时候,检查一下这个选项(如下图所示)有没有选中. 如果没有,就勾上它!
- [基础技能] 安全技术——哈希算法密码破解之彩虹表(Rainbow Table)学习
1.基础知识 刚刚学习过数字签名的相关知识,以及数字签名的伪造技术,而伪造数字签名归根结底就是密码破解的一个过程,然而直接破解的速度是非常缓慢的,所以有人想出一种办法,直接建立出一个数据文件,里面事先 ...
- mac下配置xampp多端口
首先下载并安装完XAMPP软件. 第一步: 打开XAMPP安装目录,找到配置文件. 如:/Applications/XAMPP/etc/httpd.conf 打开后查找 Listen 80 会看到以下 ...
- sql server2008 代码折叠
方法一: 用‘GO’来分开使代码折叠 可以看出go后面的自动有折叠 ,如果只有一行代码,则不会显示 方法二: 用’begin end‘来分开使代码折叠 使用begin end 可以使代码折叠 方法三: ...
- Android :fragment介绍
一.关于Fragmemt 1.Fragment(片段),主要是为了支持更多的动态和灵活的用户界面设计,如平板电脑.Fragment允许组合和交换用户界面组件,而不需要更改视图层次结构.通过把Activ ...
- asp.net实现数据库版动态网页滑动门
前端: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="滑动门.aspx.c ...