bzoj3622
容斥原理
看见恰好k个就要容斥
g[i]表示有几个b比a小
dp[i][j]表示前i个数至少有j个大的方案数,dp[i][j]=dp[i-1][j]+dp[i-1][j-1]*(g[i]-j+1),就是可以不匹配,或者在剩下的g[i]-j+1选一个
然后就是容斥了,那个系数搞的不是很清楚,和spring一样
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = , P = 1e9 + ;
int n, k;
ll ans;
ll a[N], b[N], inv[N], facinv[N], fac[N], dp[N][N], g[N];
ll C(int n, int m)
{
return fac[n] * facinv[m] % P * facinv[n - m] % P;
}
int main()
{
scanf("%d%d", &n, &k);
for(int i = ; i <= n; ++i) scanf("%d", &a[i]);
for(int i = ; i <= n; ++i) scanf("%d", &b[i]);
if((n + k) & )
{
puts("");
return ;
}
k += (n - k) >> ;
sort(a + , a + n + );
sort(b + , b + n + );
inv[] = ; fac[] = facinv[] = ;
for(int i = ; i <= n; ++i)
{
if(i != ) inv[i] = (P - P / i) * inv[P % i] % P;
facinv[i] = facinv[i - ] * inv[i] % P;
fac[i] = fac[i - ] * i % P;
}
for(int i = , j = ; i <= n; ++i)
{
while(a[i] > b[j + ] && j + <= n) ++j;
g[i] = j;
}
for(int i = ; i <= n; ++i) dp[i][] = ;
for(int i = ; i <= n; ++i)
for(int j = ; j <= g[i]; ++j)
dp[i][j] = (dp[i - ][j] + dp[i - ][j - ] * (g[i] - j + ) % P) % P;
for(int i = k; i <= n; ++i) ans = ((ans + (((i - k) & ) ? - : ) * dp[n][i] * fac[n - i] % P * C(i, k) % P) % P + P) % P;
printf("%lld\n", ans);
return ;
}
bzoj3622的更多相关文章
- BZOJ3622 已经没有什么好害怕的了 动态规划 容斥原理 组合数学
原文链接https://www.cnblogs.com/zhouzhendong/p/9276479.html 题目传送门 - BZOJ3622 题意 给定两个序列 $a,b$ ,各包含 $n$ 个数 ...
- 【BZOJ2839】集合计数&&【BZOJ3622】已经没有什么好害怕的了
再谈容斥原理来两道套路几乎一致的题目[BZOJ2839]集合计数Description一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交 ...
- 【BZOJ3622】已经没有什么好害怕的了(动态规划,容斥)
[BZOJ3622]已经没有什么好害怕的了(动态规划,容斥) 题面 BZOJ 题解 很明显的,这类问题是要从至少变成恰好的过程,直接容斥即可. 首先我们要求的是(糖果>药片)=(药片>糖果 ...
- BZOJ3622 已经没有什么好害怕的了(动态规划+容斥原理)
显然可以转化为一个阶梯状01矩阵每行每列取一个使权值和为k的方案数.直接做不可做,考虑设f[i][j]为前i行权值和至少为j,即在其中固定了j行选1的方案数.设第i行从1~a[i]列都是1且a[i]+ ...
- 【BZOJ3622】已经没有什么好害怕的了 容斥+DP
[BZOJ3622]已经没有什么好害怕的了 Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output ...
- [BZOJ3622]已经没有什么好害怕的了(容斥DP)
给定两个数组a[n]与b[n](数全不相等),两两配对,求“a比b大”的数对比“b比a大”的数对个数多k的配对方案数. 据说做了这题就没什么题好害怕的了,但感觉实际上这是一个套路题,只是很难想到. 首 ...
- BZOJ3622 已经没有什么好害怕的了 【dp + 二项式反演】
题目链接 BZOJ3622 题解 既已开题 那就已经没有什么好害怕的了 由题目中奇怪的条件我们可以特判掉\(n - k\)为奇数时答案为\(0\) 否则我们要求的就是糖果大于药片恰好有\(\frac{ ...
- [bzoj3622]已经没有什么好害怕的了_动态规划_容斥原理
bzoj-3622 已经没有什么好害怕的了 题目大意: 数据范围:$1\le n \le 2000$ , $0\le k\le n$. 想法: 首先,不难求出药片比糖果小的组数. 紧接着,我开始的想法 ...
- bzoj3622已经没有什么好害怕的了
bzoj3622已经没有什么好害怕的了 题意: 给n个数Ai,n个数Bi,将Ai中的数与Bi中的数配对,求配对Ai比Bi大的比Bi比Ai大的恰好有k组的方案数.n,k≤2000 题解: 蒟蒻太弱了只能 ...
- BZOJ3622 已经没有什么好害怕的了
Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output 4 HINT 输入的2*n个数字保证全不相 ...
随机推荐
- 用Visual C++ 2010 载入动态链接库三部曲(使用第三方库的一般方法)
以下以载入编译好的ACE动态链接库为例说明:这里如果你已经设置了环境变量ACE_ROOT ACE在VS2010下高速配置载入动态链接库三部曲:(这里如果你的ACE文件夹为E:\ACE_wrappers ...
- Odoo webinar
分享些 odoo9 webinar 视频 https://pan.baidu.com/s/1pLF5njt
- SpringMVC:文件上传
MultipartFile attach HttpServletRequest re commons-io-2.0.jar (一定要用2.0以上的版本,否则没有copyInputStreamToFil ...
- tempdb 相关总结
/* -- 0. 高速压缩tempdb为初始值 USE tempdb DBCC SHRINKFILE(2,TRUNCATEONLY); */ -- 1. tempdb以下未回收的暂时表 ,某些版本号可 ...
- 《UNIX-Shell编程24学时教程》读书笔记chap7 变量
7.0 本章内容: 定义,访问,删除标题和数组变量:环境变量和shell变量 7.1 定义变量 标量一次只存储一个值[名字值对]:数组变量可以存储多个值. 以数字开头的变量名如1,2或11将保留为Sh ...
- ListView中button监听器 设置 及 优化
在应用开发中常常会用到ListView,而且每个Item里面都会有button之类的须要进行事件监听的控件.在给button加入OnClickListener的时候,一開始非常下意识的会想在ListV ...
- JrtpLib vs2012环境下编译及使用 GotoFirstSourceWithData 方法 进不去
项目中有一项功能是接收rtp数据,接收rtp的可以用PJMedia,可以用JrtpLib.PJMedia库无法解决内外网的问题,只有用Jrtp库了. 首先说下Jrtp 的编译问题,我是在windows ...
- 怎样在C语言里实现“面向对象编程”
有人觉得面向对象是C++/Java这样的高级语言的专利,实际不是这样.面向对象作为一种设计方法.是不限制语言的.仅仅能说,用C++/Java这样的语法来实现面向对象会更easy.更自然一些. 在本节中 ...
- iLBC简要介绍
iLBC(internet lowbitrate codec):是全球著名语音引擎提供商Global IP Sound开发,它是低比特率的编码解码器,提供在丢包时具有的强大的健壮性.iLBC 提供的语 ...
- Quartz 2D编程指南(2)图形上下文(Graphics Contexts)
Graphics Contexts 一个Graphics Context表示一个绘制目标(也能够理解为图形上下文).它包括绘制系统用于完毕绘制指令的绘制參数和设备相关信息.Graphics ...