容斥原理

看见恰好k个就要容斥

g[i]表示有几个b比a小

dp[i][j]表示前i个数至少有j个大的方案数,dp[i][j]=dp[i-1][j]+dp[i-1][j-1]*(g[i]-j+1),就是可以不匹配,或者在剩下的g[i]-j+1选一个

然后就是容斥了,那个系数搞的不是很清楚,和spring一样

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = , P = 1e9 + ;
int n, k;
ll ans;
ll a[N], b[N], inv[N], facinv[N], fac[N], dp[N][N], g[N];
ll C(int n, int m)
{
return fac[n] * facinv[m] % P * facinv[n - m] % P;
}
int main()
{
scanf("%d%d", &n, &k);
for(int i = ; i <= n; ++i) scanf("%d", &a[i]);
for(int i = ; i <= n; ++i) scanf("%d", &b[i]);
if((n + k) & )
{
puts("");
return ;
}
k += (n - k) >> ;
sort(a + , a + n + );
sort(b + , b + n + );
inv[] = ; fac[] = facinv[] = ;
for(int i = ; i <= n; ++i)
{
if(i != ) inv[i] = (P - P / i) * inv[P % i] % P;
facinv[i] = facinv[i - ] * inv[i] % P;
fac[i] = fac[i - ] * i % P;
}
for(int i = , j = ; i <= n; ++i)
{
while(a[i] > b[j + ] && j + <= n) ++j;
g[i] = j;
}
for(int i = ; i <= n; ++i) dp[i][] = ;
for(int i = ; i <= n; ++i)
for(int j = ; j <= g[i]; ++j)
dp[i][j] = (dp[i - ][j] + dp[i - ][j - ] * (g[i] - j + ) % P) % P;
for(int i = k; i <= n; ++i) ans = ((ans + (((i - k) & ) ? - : ) * dp[n][i] * fac[n - i] % P * C(i, k) % P) % P + P) % P;
printf("%lld\n", ans);
return ;
}

bzoj3622的更多相关文章

  1. BZOJ3622 已经没有什么好害怕的了 动态规划 容斥原理 组合数学

    原文链接https://www.cnblogs.com/zhouzhendong/p/9276479.html 题目传送门 - BZOJ3622 题意 给定两个序列 $a,b$ ,各包含 $n$ 个数 ...

  2. 【BZOJ2839】集合计数&&【BZOJ3622】已经没有什么好害怕的了

    再谈容斥原理来两道套路几乎一致的题目[BZOJ2839]集合计数Description一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交 ...

  3. 【BZOJ3622】已经没有什么好害怕的了(动态规划,容斥)

    [BZOJ3622]已经没有什么好害怕的了(动态规划,容斥) 题面 BZOJ 题解 很明显的,这类问题是要从至少变成恰好的过程,直接容斥即可. 首先我们要求的是(糖果>药片)=(药片>糖果 ...

  4. BZOJ3622 已经没有什么好害怕的了(动态规划+容斥原理)

    显然可以转化为一个阶梯状01矩阵每行每列取一个使权值和为k的方案数.直接做不可做,考虑设f[i][j]为前i行权值和至少为j,即在其中固定了j行选1的方案数.设第i行从1~a[i]列都是1且a[i]+ ...

  5. 【BZOJ3622】已经没有什么好害怕的了 容斥+DP

    [BZOJ3622]已经没有什么好害怕的了 Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output ...

  6. [BZOJ3622]已经没有什么好害怕的了(容斥DP)

    给定两个数组a[n]与b[n](数全不相等),两两配对,求“a比b大”的数对比“b比a大”的数对个数多k的配对方案数. 据说做了这题就没什么题好害怕的了,但感觉实际上这是一个套路题,只是很难想到. 首 ...

  7. BZOJ3622 已经没有什么好害怕的了 【dp + 二项式反演】

    题目链接 BZOJ3622 题解 既已开题 那就已经没有什么好害怕的了 由题目中奇怪的条件我们可以特判掉\(n - k\)为奇数时答案为\(0\) 否则我们要求的就是糖果大于药片恰好有\(\frac{ ...

  8. [bzoj3622]已经没有什么好害怕的了_动态规划_容斥原理

    bzoj-3622 已经没有什么好害怕的了 题目大意: 数据范围:$1\le n \le 2000$ , $0\le k\le n$. 想法: 首先,不难求出药片比糖果小的组数. 紧接着,我开始的想法 ...

  9. bzoj3622已经没有什么好害怕的了

    bzoj3622已经没有什么好害怕的了 题意: 给n个数Ai,n个数Bi,将Ai中的数与Bi中的数配对,求配对Ai比Bi大的比Bi比Ai大的恰好有k组的方案数.n,k≤2000 题解: 蒟蒻太弱了只能 ...

  10. BZOJ3622 已经没有什么好害怕的了

    Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output 4 HINT 输入的2*n个数字保证全不相 ...

随机推荐

  1. 浅谈MySQL外键

    http://www.xiaoxiaozi.com/2009/07/12/1158/ 像MySQL这样的关系型数据库管理系统,它们的基础是在数据库的表之间创建关系的能力.通过方便地在不同表中建立记录到 ...

  2. ok6410[001] Ubuntu 16.04[64bit]嵌入式交叉编译环境arm-linux-gcc搭建过程图解

    开发PC:Ubuntu16.04.1 开发板:OK6410[飞凌公司出品] 目标:通过GPIO点亮LED ----------------------------------------------- ...

  3. caffeModels--models-caffes-大全

    caffe的伯克利主页:http://caffe.berkeleyvision.org/caffe的github主页:https://github.com/BVLC/caffe caffe的model ...

  4. ubuntu安装rpm格式文件方法(转载)

    red hat 系统用rpm格式的文件安装软件   Debian系列用deb格式的文件安装软件 ubuntu安装软件是用deb格式的文件安装,ubuntu对于rpm格式的文件安装软件是: 先将rmp格 ...

  5. 图像处理之滤波---滤波在游戏中的应用boxfilter

    http://www.yxkfw.com/?p=7810 很有意思的全方位滤波应用 https://developer.nvidia.com/sites/default/files/akamai/ga ...

  6. SAM4E单片机之旅——7、LED闪烁之TC中断

    RTT主要用做一个全局的定时器,而且不太通用.现在尝试使用一个更为通用的定时器进行定时:定时计数器(Timer Counter, TC). TC提供了广泛的功能,主要可以分为对输入的测量,以及波形的输 ...

  7. ZOJ 3551 Bloodsucker <概率DP>

    题目:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3551 题意:开始有N-1个人和一个吸血鬼, 每天有两个生物见面,当人 ...

  8. Python笔记——基本数据结构:列表、元组及字典

    转载请注明出处:http://blog.csdn.net/wklken/archive/2011/04/10/6312888.aspx Python基本数据结构:列表,元组及字典 一.列表 一组有序项 ...

  9. tomcat部署web应用的4种方法以及部署多个应用

    原文: tomcat部署web应用的4种方法 在Tomcat中有四种部署Web应用的方式,简要的概括分别是: (1)利用Tomcat自动部署 (2)利用控制台进行部署 (3)增加自定义的Web部署文件 ...

  10. Android笔记之自定义PopupWindow

    效果图 popup_window_addition.xml <?xml version="1.0" encoding="utf-8"?> <L ...