LOJ N!在不同进制的位数
lightoj1045 - Digits of Factorial (N!不同进制的位数)
cin>>n;
cout<<(int)(ceil((n*log(n)-n+0.5*log(*n*pi))/log()))<<endl;
【换底公式:logx (n!) = log(n!) / log(x) 】
【阶乘变加法:log (n!)=log1 + log2 + log3 + log4 +……+log(n),】N !在10进制下的位数为log10 (n!) + 1; 所以在x进制下的位数为logx (n!) + 1;
但是计算机只能表示以10和e为底的对数,所以要用换底公式,logx (n!) = log(n!) / log(x) ;【注意,等号右边的 log 都是默认以e为底】
log (n!)=log1 + log2 + log3 + log4 +……+log(n), 所以n比较大时计算log(n!)时已经把其他数的阶乘也算出来了,
如果给出一个n都要计算阶乘的话,费时间o(n),所以可以把 log (n!) 先用double型数组sum[]先存起来,令sun[i]=log(i!)
先预处理出sum[i]后面可直接调用;
#include<stdio.h>
#include<string.h>
#include<math.h>
double sum[];//数组要是double型的;
int main()
{
memset(sum,,sizeof(sum));
sum[]=log();
for(int i=;i<=;i++)
{
sum[i]=sum[i-]+log(i);
}
int t,n,b,mm=;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&b);
if(n==)
{
printf("Case %d: 1\n",mm++);//0的阶乘等于1,此时不能用sum[0],因为真数不能为0不符合所以要单独列出;
}
else
{
int c;//定义一个整形c,把double强制转换成int ;
c=sum[n]/log(b)+;
printf("Case %d: %d\n",mm++,c);
}
}
return ;
}
LOJ N!在不同进制的位数的更多相关文章
- SDUT 3503 有两个正整数,求N!的K进制的位数
有两个正整数,求N!的K进制的位数 题目链接:action=showproblem&problemid=3503">http://sdutacm.org/sdutoj/prob ...
- javascript . 04 匿名函数、递归、回调函数、对象、基于对象的javascript、状态和行为、New、This、构造函数/自定义对象、属性绑定、进制转换
匿名函数: 没有名字的函数,函数整体加小括号不报错, 函数调用 : a:直接调用 (function (){函数体}) ( ) ; b:事件绑定 document.onlick = functio ...
- 洛谷P1066 2^k进制数(题解)(递推版)
https://www.luogu.org/problemnew/show/P1066(题目传送) (题解)https://www.luogu.org/problemnew/solution/P106 ...
- Java 基础------16进制转2进制
我们知道,数字8用二进制表示为:1000 用16进制表示为:8 那么我给你一个16进制的数字,0x7f,他的二进制是什么呢? 一个16进制的位数,用4位表示.比如,0x 7 f 其中: 7用4位二进制 ...
- 将十进制数转为一个n位数的密码(每位都是个m进制数)
例如一个6位数的10进制密码,共有106个密码,如果把每个6位数的密码编成号就是[0,106-1].这是十进制的情况,即6个位,每个位有10种选择.如果要遍历所有密码,需要6重for循环,每个循环10 ...
- [转]as3 算法实例【输出1 到最大的N 位数 题目:输入数字n,按顺序输出从1 最大的n 位10 进制数。比如输入3,则输出1、2、3 一直到最大的3 位数即999。】
思路:如果我们在数字前面补0的话,就会发现n位所有10进制数其实就是n个从0到9的全排列.也就是说,我们把数字的每一位都从0到9排列一遍,就得到了所有的10进制数. /** *ch 存放数字 *n n ...
- double四舍五入,商品金额大小写转换,设置货币的小数位数跟格式输出,进制转化
1:计算double值四舍五入的方法 对小数数值进行四舍五入,首先应该确认保留小数位, 如果数值的小数精度大于保留小数位,那么开始四舍五入计算.四舍五入的方法非常简单,在所有要丢失精度的小数位中加 ...
- UVA 10061 How many zero's and how many digits ? (m进制,阶乘位数,阶乘后缀0)
题意: 给出两个数字a和b,求a的阶乘转换成b进制后,输出 (1)后缀中有多少个连续的0? (2)数a的b进制表示法中有多少位? 思路:逐个问题解决. 设a!=k. k暂时不用直接转成b进制. (1 ...
- ZOJ 3962 Seven Segment Display 16进制的八位数加n。求加的过程中所有的花费。显示[0,F]有相应花费。
Seven Segment Display Time Limit: Seconds Memory Limit: KB A seven segment display, or seven segment ...
随机推荐
- A计划 hdu2102(BFS)
A计划 hdu2102 可怜的公主在一次次被魔王掳走一次次被骑士们救回来之后,而今,不幸的她再一次面临生命的考验.魔王已经发出消息说将在T时刻吃掉公主,因为他听信谣言说吃公主的肉也能长生不老.年迈的国 ...
- 洛谷P1424小鱼的航程改进版
题目链接https://www.luogu.org/problemnew/show/P1424
- 步骤详解安装Apache web服务器
1.在上右键è安装 安装后apache web服务器自动启动. 在右下角出现. Apache安装之后有一个默认的网站目录 在浏览器上通过网站就可以访问到该目录下的文件. 2.测试 在浏览器输上请求lo ...
- c语言入门-03-数据和c
1>C语言提供两大系列的多种数据类型 1 /*platinum.c*/ 2 #include <stdio.h> 3 4 int main(void){ 5 float weight ...
- Spring boot 上传文件大小限制
1.spring boot 1.x 版本 application.properties 文件中 位置在(resources下) spring.http.multipart.maxFileSize = ...
- Visual C++斗地主游戏网络版源代码
说明:VC++ 6.0写的网络版斗地主游戏,程序基于directx SDK开发,因此你在编译时需要引入相应文件才可以,本斗地主可以支持双人对战.网络对战,游戏随机产生地主,动画发牌,界面也不错,还有声 ...
- java之LinkedList.add
LinkedList: public boolean add(E e) { linkLast(e); return true; } void linkLast(E e) { //last为当前集合的最 ...
- maven学习(十一)——maven中的聚合与继承
一.聚合 如果我们想一次构建多个项目模块,那我们就需要对多个项目模块进行聚合 1.1.聚合配置代码 <modules> <module>模块一</module> & ...
- 【转】Unity3D 场景切换与持久化简单数据储存(PlayerPrefs类)
本篇文章主要介绍了"Unity3D 场景切换与持久化简单数据储存(PlayerPrefs类)",主要涉及到Unity3D 场景切换与持久化简单数据储存(PlayerPrefs类)方 ...
- 查看oracle日志路径
adrci ADRCI: Release 12.2.0.1.0 - Production on Tue Oct 9 16:14:35 2018 Copyright (c) 1982, 2017, Or ...