Dancing Stars on Me

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 2460    Accepted Submission(s): 1420

Problem Description
The sky was brushed clean by the wind and the stars were cold in a black sky. What a wonderful night. You observed that, sometimes the stars can form a regular polygon in the sky if we connect them properly. You want to record these moments by your smart camera. Of course, you cannot stay awake all night for capturing. So you decide to write a program running on the smart camera to check whether the stars can form a regular polygon and capture these moments automatically.

Formally, a regular polygon is a convex polygon whose angles are all equal and all its sides have the same length. The area of a regular polygon must be nonzero. We say the stars can form a regular polygon if they are exactly the vertices of some regular polygon. To simplify the problem, we project the sky to a two-dimensional plane here, and you just need to check whether the stars can form a regular polygon in this plane.

 
Input
The first line contains a integer T indicating the total number of test cases. Each test case begins with an integer n, denoting the number of stars in the sky. Following nlines, each contains 2 integers xi,yi, describe the coordinates of n stars.

1≤T≤300
3≤n≤100
−10000≤xi,yi≤10000
All coordinates are distinct.

 
Output
For each test case, please output "`YES`" if the stars can form a regular polygon. Otherwise, output "`NO`" (both without quotes).
 
Sample Input
3
3
0 0
1 1
1 0
4
0 0
0 1
1 0
1 1
5
0 0
0 1
0 2
2 2
2 0
 
Sample Output
NO
YES
NO
 
Source
 
Recommend
 
 
 #define  N  109
int t,n;
double x[N],y[N];
double x_,y_;
double dis(double x,double y){
return sqrt((x-x_)*(x-x_)+(y-y_)*(y-y_));
}
int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
x_=,y_=;
for(int i=;i<n;i++){
scanf("%lf%lf",&x[i],&y[i]);
x_+=x[i]/n;
y_+=y[i]/n;
}
double temp=dis(x[],y[]);
int flag=;
for(int i=;i<n;i++)
{
if(dis(x[i],y[i])!=temp){
flag=;
break;
}
}
if(flag){
printf("YES\n");
}
else{
printf("NO\n");
}
}
return ;
} //结论 在平面内,如果坐标都为整数,那么只有可能是正四边形
//1 1 1 1 2 2(排序后边长比例)
int x[N],y[N];
int a[];
bool check()
{
if(n!=) return false;
int cnt=;
for(int i=;i<;i++)
{
for(int j=i+;j<;j++)
{
a[cnt++]=(x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]);
}
}
sort(a,a+cnt);
if(a[]==a[]&&a[]==a[]&&a[]==a[]&&a[]==*a[]&&a[]==a[])
return true;
return false;
}
int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i=;i<n;i++){
scanf("%d%d",&x[i],&y[i]);
}
if(check()){
printf("YES\n");
}
else{
printf("NO\n");
}
}
return ;
}

hdu 5533的更多相关文章

  1. hdu 5533 Dancing Stars on Me 水题

    Dancing Stars on Me Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.p ...

  2. hdu 5533 Dancing Stars on Me

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5533 Dancing Stars on Me Time Limit: 2000/1000 MS (Ja ...

  3. 2015ACM/ICPC亚洲区长春站 G hdu 5533 Dancing Stars on Me

    Dancing Stars on Me Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Ot ...

  4. 2015ACM/ICPC亚洲区长春站 F hdu 5533 Almost Sorted Array

    Almost Sorted Array Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Ot ...

  5. hdu 5533 Dancing Stars on Me(数学,水)

    Problem Description The sky was brushed clean by the wind and the stars were cold in a black sky. Wh ...

  6. hdu 5533(几何水)

    Input The first line contains a integer T indicating the total number of test cases. Each test case ...

  7. HDU 5533/ 2015长春区域 G.Dancing Stars on Me 暴力

    Dancing Stars on Me Problem Description The sky was brushed clean by the wind and the stars were col ...

  8. HDU 5533 Dancing Stars on Me( 有趣的计算几何 )

    链接:传送门 题意:给出 n 个点,判断能不能构成一个正 n 边形,这 n 个点坐标是整数 思路:这道题关键就在与这 n 个点坐标是正整数!!!可以简单的分析,如果 n != 4,那一定就不能构成正 ...

  9. hdu 5533 正n边形判断 精度处理

    Dancing Stars on Me Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Ot ...

随机推荐

  1. 041 First Missing Positive 第一个缺失的正数

    给一个未排序的数组,找出第一个缺失的正整数.例如,[1,2,0] 返回 3,[3,4,-1,1] 返回 2.你的算法应该在 O(n) 的时间复杂度内完成并且使用常数量的空间.详见:https://le ...

  2. 洛谷-P3927 SAC E#1 - 一道中档题 Factorial

    原址 题目背景 数据已修改 SOL君(炉石主播)和SOL菌(完美信息教室讲师)是好朋友. 题目描述 SOL君很喜欢阶乘.而SOL菌很喜欢研究进制. 这一天,SOL君跟SOL菌炫技,随口算出了n的阶乘. ...

  3. 【转】HTTPS系列干货(一):HTTPS 原理详解

    HTTPS系列干货(一):HTTPS 原理详解 前言 HTTPS(全称:HyperText Transfer Protocol over Secure Socket Layer),其实 HTTPS 并 ...

  4. 如何变更站点 AD 域服务器IP地址

    在 winserver 2012  单森林单域,多站点环境中,想把某一个站点AD 域服务器IP地址更改,要如何操作,才能保证客户端正常运行,不影响客户端的运行.有些朋友也经常提出类似问题. 想在不影响 ...

  5. Windows环境中,通过Charles工具,抓取安卓手机、苹果手机中APP应用的http、https请求包信息

    Windows环境中,通过Charles工具,抓取安卓手机.苹果手机中APP应用的http.https请求包信息1.抓取安卓手机中APP应用的http请求包信息1)在电脑上操作,查看Windows机器 ...

  6. JAVA-WEB总结02

     1 什么是JavaBean?有何特征?    1)符合特定规则的类    2)JavaBean分二类: a)侠义的JavaBean .私有的字段(Field) .对私有字段提供存取方法(读写方法) ...

  7. BZOJ 1806: [Ioi2007]Miners 矿工配餐

    ime Limit: 10 Sec  Memory Limit: 64 MBSubmit: 910  Solved: 559[Submit][Status][Discuss] Description ...

  8. python爬虫之路——变量和变量类型

    变量类型: ①单值:int ②多值:数组 ③复杂:类 变量类型:就是变量的数据结构,表示这个变量所代表的内容的格式是怎样的. (多值)四种基本数据结构: 列表,字典,元组,集合 列表: ①元素可变,  ...

  9. 在SAP C4C里触发SAP ERP的ATP check和Credit check

    在C4C里创建一个新的Sales Quote: 添加三个行项目: 执行action "Request External Pricing"会从ERP更新pricing信息,触发ATP ...

  10. javaweb基础(3)_tomcat下部署项目

    一.打包JavaWeb应用 在Java中,使用"jar"命令来对将JavaWeb应用打包成一个War包,jar命令的用法如下: