Bolzano-Weierstrass 定理
这个定理是从吴崇试老师的数学物理方法课里看到的,表述如下:
有界的无穷(复数)序列至少有一个聚点。
序列的聚点定义为
给定序列 $\{z_n\}$,若存在复数 $z$,对于任意给定的 $\varepsilon > 0$ 恒有无穷多个 $z_n$ 满足 $| z- z_n| < \varepsilon$,则称 $z$ 为 $\{z_n\}$ 的一个聚点。
$\{z_n\}$ 有聚点等价于 $\{z_n\}$ 有收敛子列。我们试图构造出 $\{z_n\}$ 的一个收敛子列。
先证明有界实数列满足 B-W 定理,即
有界实数列必有收敛子列。
证明:设序列 $\{a_n\}$ 都落在 $[a,b]$ 中,将 $[a,b]$ 等分成 $[a, (a+b)/2]$ 和 $[(a+b)/2, b]$,其中必有一个区间含有无穷多项 $a_n$,记此区间为 $I_1$,在 $I_1$ 中选择一项 $a_{i_1}$;再将 $I_1$ 等分成两份,取其中含有无穷多项 $a_n$ 者记做 $I_2$,在 $I_2$ 中选取一项 $a_{i_2}$ 使得 $i_2 > i_1$,如此进行下去。令 $I_n = [ l_n, r_n]$ ,则 $\{l_n\}$ 递增有界,$\{r_n\}$ 递减有界,即二者都收敛;令 $l = \lim_{n\to\infty} l_n$,$r = \lim_{n\to\infty} r_n$;又 $\lim_{n\to\infty} r_n - l_n = \lim_{n\to\infty} (b-a)/2^n = 0 $,因而 $x = y$。又 $a_{i_n} \in [l_n, r_n]$ ,由夹逼原理有 $\lim_{n\to\infty} a_{i_n} = x$,于是 $\{a_{i_n}\}$ 收敛。证毕。
再证明欧氏空间 $\mathbb{R}^p$ 中的序列满足 B-W 定理,即
$\mathbb{R}^p$ 中的有界序列必有收敛子列。
证明:对 $p$ 用归纳法。我们已经证明了 $p=1$ 时 B-W 定理成立。设 $p= k$ 时定理成立,给定 $\mathbb{R}^{k+1}$ 中的有界序列 $\{\mathbf{a}_n\}$,令 $\mathbf{a}_n=(\mathbf{x}_n, y_n)$,可以证明 $\{\mathbf{x}_n\}$ 在 $\mathbb{R}^k$ 中有界,$\{y_n\}$ 在 $\mathbb{R}$ 中有界。
取 $\{\mathbf{x}_n\}$ 的一个收敛子列 $\{\mathbf{x}_{n_i}\}$,记其极限为 $\mathbf{x}$,再取 $\{y_{n_i}\}$ 的一个收敛子列 $\{y_{n_{i_j}}\}$,记其极限为 $y$,我们有 $\{ \mathbf{x}_{n_{i_j}} \}$ 收敛于 $\mathbf{x}$,于是 $\{\mathbf{a}_{n_{i_j}}\}$ 收敛于 $(\mathbf{x},y)$ 。证毕。
$\mathbb{R}^2$ 与 $\mathbb{C}$ 同构,所以原命题成立。
Bolzano-Weierstrass 定理的更多相关文章
- Polynomial Library in OpenCascade
Polynomial Library in OpenCascade eryar@163.com 摘要Abstract:分析幂基曲线即多项式曲线在OpenCascade中的计算方法,以及利用OpenSc ...
- Mittag-Leffler定理,Weierstrass因子分解定理和插值定理
Mittag-Leffler定理 设$D\subset\mathbb C$为区域,而$\{a_{n}\}$为$D$中互不相同且无极限点的点列,那么对于任意给定的一列自然数$\{k_{n}\}$, ...
- 【HDU 3037】Saving Beans Lucas定理模板
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...
- 【转】Polya定理
转自:http://endlesscount.blog.163.com/blog/static/82119787201221324524202/ Polya定理 首先记Sn为有前n个正整数组成的集合, ...
- hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)
题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3. ...
- poj1006Biorhythms(同余定理)
转自:http://blog.csdn.net/dongfengkuayue/article/details/6461298 本文转自head for better博客,版权归其所有,代码系本人自己编 ...
- CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)
Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...
- 大组合数:Lucas定理
最近碰到一题,问你求mod (p1*p2*p3*……*pl) ,其中n和m数据范围是1~1e18 , l ≤10 , pi ≤ 1e5为不同的质数,并保证M=p1*p2*p3*……*pl ≤ 1e18 ...
- SPOJ HIGH Highways ——Matrix-Tree定理 高斯消元
[题目分析] Matrix-Tree定理+高斯消元 求矩阵行列式的值,就可以得到生成树的个数. 至于证明,可以去看Vflea King(炸树狂魔)的博客 [代码] #include <cmath ...
- 洛谷 P2735 电网 Electric Fences Label:计算几何--皮克定理
题目描述 在本题中,格点是指横纵坐标皆为整数的点. 为了圈养他的牛,农夫约翰(Farmer John)建造了一个三角形的电网.他从原点(0,0)牵出一根通电的电线,连接格点(n,m)(0<=n& ...
随机推荐
- 题解 P1137 【旅行计划】
传送门 很显然,每个点的答案是它所有前驱节点的答案加1,即f[i]=max(f[i],f[j]+1); 考虑空间复杂度用邻接表存图,在拓扑排序同时DP就好了 #include<iostream& ...
- grep过滤目录或文件方法
在使用grep在指定目录下查找包含指定字符串的文件是,我们想过滤(即不递归查询指定目录)时!可以使用 –exclude-dir 参数 单个目录实例 搜索.目录但不搜索在.目录下的.svg目录中包含&q ...
- 五、MySQL 创建数据库
MySQL 创建数据库 我们可以在登陆 MySQL 服务后,使用 create 命令创建数据库,语法如下: CREATE DATABASE 数据库名; 以下命令简单的演示了创建数据库的过程,数据名为 ...
- 关于sql查询结果集的链接
开通博客有一段时间了,第一次博文.本身是个理工科的,没啥文采,就想着把平时遇到的问题记录下来,防止自己以后忘了还要去翻找. 今天看到同事写的代码,查询两张表里的数据,结果集类型是一样的.写了两条查询, ...
- 嵌入式开发 centos7 交叉编译环境准备
1. 安装centos7,启动图像化界面. 参考:https://blog.csdn.net/qq_23014435/article/details/74347925 # systemctl get- ...
- git bush的一些基础命令
git bush的一些基础命令(不区分大小写) 通过命令创建本地仓库 首先自己需要手动建一个文件夹用于本地仓库 进行如下输入,使用cd跳转到刚刚创建的文件夹中 之后再输入 git init 即可创建 ...
- jQuery具体实例介绍什么时候用ajax,ajax应该在什么地方使用
网站开发时,ajax是一个非常方便的工具,它具有和表单相同的功能完成前端和后台之间的交互!它起到局部刷新的功能!那什么时候用ajax呢?下面给大家介绍几个实例,首先应该分为两类: 一.在用表单和aj ...
- Pychram基本操作
1. 更改pychram页面为黑色背景主题.更改主题: File ->Settings -> Editor -> Color Scheme -> Scheme -> Mo ...
- 精通SpringBoot--整合Redis实现缓存
今天我们来讲讲怎么在spring boot 中整合redis 实现对数据库查询结果的缓存.首先第一步要做的就是在pom.xml文件添加spring-boot-starter-data-redis.要整 ...
- debug模式开启会做哪些事(源码分析)
以往开发中不管是django框架下开发还是其它框架下开发, 只知道在开发阶段要开启debug模式, 却一直没有深究它会我们做哪些事, 今天使用tornado时偶然看到源码中写的很清楚,故写下来加深印象 ...