这个定理是从吴崇试老师的数学物理方法课里看到的,表述如下:

有界的无穷(复数)序列至少有一个聚点。

序列的聚点定义为

给定序列 $\{z_n\}$,若存在复数 $z$,对于任意给定的 $\varepsilon > 0$ 恒有无穷多个 $z_n$ 满足 $| z- z_n| < \varepsilon$,则称 $z$ 为 $\{z_n\}$ 的一个聚点。

$\{z_n\}$ 有聚点等价于 $\{z_n\}$ 有收敛子列。我们试图构造出 $\{z_n\}$ 的一个收敛子列。

先证明有界实数列满足 B-W 定理,即

有界实数列必有收敛子列。

证明:设序列 $\{a_n\}$ 都落在 $[a,b]$ 中,将 $[a,b]$ 等分成 $[a, (a+b)/2]$ 和 $[(a+b)/2, b]$,其中必有一个区间含有无穷多项 $a_n$,记此区间为 $I_1$,在 $I_1$ 中选择一项 $a_{i_1}$;再将 $I_1$ 等分成两份,取其中含有无穷多项 $a_n$ 者记做 $I_2$,在 $I_2$ 中选取一项 $a_{i_2}$ 使得 $i_2 > i_1$,如此进行下去。令 $I_n = [ l_n, r_n]$ ,则 $\{l_n\}$ 递增有界,$\{r_n\}$ 递减有界,即二者都收敛;令 $l = \lim_{n\to\infty} l_n$,$r = \lim_{n\to\infty} r_n$;又 $\lim_{n\to\infty} r_n - l_n = \lim_{n\to\infty} (b-a)/2^n = 0 $,因而 $x = y$。又 $a_{i_n} \in [l_n, r_n]$ ,由夹逼原理有 $\lim_{n\to\infty} a_{i_n} = x$,于是 $\{a_{i_n}\}$ 收敛。证毕。

再证明欧氏空间 $\mathbb{R}^p$ 中的序列满足 B-W 定理,即

$\mathbb{R}^p$ 中的有界序列必有收敛子列。

证明:对 $p$ 用归纳法。我们已经证明了 $p=1$ 时 B-W 定理成立。设 $p= k$ 时定理成立,给定 $\mathbb{R}^{k+1}$ 中的有界序列 $\{\mathbf{a}_n\}$,令 $\mathbf{a}_n=(\mathbf{x}_n, y_n)$,可以证明 $\{\mathbf{x}_n\}$ 在 $\mathbb{R}^k$ 中有界,$\{y_n\}$ 在 $\mathbb{R}$ 中有界。
取 $\{\mathbf{x}_n\}$ 的一个收敛子列 $\{\mathbf{x}_{n_i}\}$,记其极限为 $\mathbf{x}$,再取 $\{y_{n_i}\}$ 的一个收敛子列 $\{y_{n_{i_j}}\}$,记其极限为 $y$,我们有 $\{ \mathbf{x}_{n_{i_j}} \}$ 收敛于 $\mathbf{x}$,于是 $\{\mathbf{a}_{n_{i_j}}\}$ 收敛于 $(\mathbf{x},y)$ 。证毕。

$\mathbb{R}^2$ 与 $\mathbb{C}$ 同构,所以原命题成立。

Bolzano-Weierstrass 定理的更多相关文章

  1. Polynomial Library in OpenCascade

    Polynomial Library in OpenCascade eryar@163.com 摘要Abstract:分析幂基曲线即多项式曲线在OpenCascade中的计算方法,以及利用OpenSc ...

  2. Mittag-Leffler定理,Weierstrass因子分解定理和插值定理

    Mittag-Leffler定理    设$D\subset\mathbb C$为区域,而$\{a_{n}\}$为$D$中互不相同且无极限点的点列,那么对于任意给定的一列自然数$\{k_{n}\}$, ...

  3. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  4. 【转】Polya定理

    转自:http://endlesscount.blog.163.com/blog/static/82119787201221324524202/ Polya定理 首先记Sn为有前n个正整数组成的集合, ...

  5. hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)

    题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3.                  ...

  6. poj1006Biorhythms(同余定理)

    转自:http://blog.csdn.net/dongfengkuayue/article/details/6461298 本文转自head for better博客,版权归其所有,代码系本人自己编 ...

  7. CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)

    Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...

  8. 大组合数:Lucas定理

    最近碰到一题,问你求mod (p1*p2*p3*……*pl) ,其中n和m数据范围是1~1e18 , l ≤10 , pi ≤ 1e5为不同的质数,并保证M=p1*p2*p3*……*pl ≤ 1e18 ...

  9. SPOJ HIGH Highways ——Matrix-Tree定理 高斯消元

    [题目分析] Matrix-Tree定理+高斯消元 求矩阵行列式的值,就可以得到生成树的个数. 至于证明,可以去看Vflea King(炸树狂魔)的博客 [代码] #include <cmath ...

  10. 洛谷 P2735 电网 Electric Fences Label:计算几何--皮克定理

    题目描述 在本题中,格点是指横纵坐标皆为整数的点. 为了圈养他的牛,农夫约翰(Farmer John)建造了一个三角形的电网.他从原点(0,0)牵出一根通电的电线,连接格点(n,m)(0<=n& ...

随机推荐

  1. NOIP2018赛前停课集训记——最后的刷板子计划

    前言 再过两天就\(NOIP2018\)了. 于是,我决定不做其他题目,开始一心一意刷板子了. 这篇博客记录的就是我的刷板子计划. [洛谷3383][模板]线性筛素数 这种普及-的题目我还写挂了两次( ...

  2. 在RichTextBox控件中显示RTF格式文件

    实现效果: 知识运用:    RichTextBox控件的LoadFile方法 //将文件内容加载到RichTextBox控件中 public void LoadFile(string path,Ri ...

  3. 2017.12.4 JavaWeb中EL表达式的运用

    <%@ page contentType="text/html; charset=gb2312"%> <html> <head> <tit ...

  4. MySQL详细安装过程

    目录 一.概述 二.MySQL安装 三.安装成功验证 四.NavicatforMySQL下载及使用 一.概述 MySQL版本:5.7.17 下载地址:http://rj.baidu.com/soft/ ...

  5. MySQL表碎片整理

    MySQL表碎片整理 1. 计算碎片大小 2. 整理碎片 2.1 使用alter table table_name engine = innodb命令进行整理. 2.2 使用pt-online-sch ...

  6. Flask初学者:g对象,hook钩子函数

    Flask的g对象 作用:g可以可以看作是单词global的缩写,使用“from flask import g”导入,g对象的作用是保存一些在一次请求中多个地方的都需要用到的数据,这些数据可能在用到的 ...

  7. 适合学习C语言开源项目——嵌入式脚本语言 Berry

    嵌入式脚本语言 Berry github网址 :https://github.com/Skiars/berry Berry 是一款面向小型嵌入式系统的脚本语言,目前发布了 0.1.0 版本.相比于其他 ...

  8. ListNode Java创建链表

    用了一种自创的比较简洁的方式来创建链表 class ListNode { //为了方便,这两个变量都使用pub1ic, //存放数据的变量,直接为int型 public int data; //存放结 ...

  9. 海量数据处理算法—BitMap

    1. Bit Map算法简介 来自于<编程珠玑>.所谓的Bit-map就是用一个bit位来标记某个元素对应的Value, 而Key即是该元素.由于采用了Bit为单位来存储数据,因此在存储空 ...

  10. python基础——18(面向对象2+异常处理)

    一.组合 自定义类的对象作为另一个类的属性. class Teacher: def __init__(self,name,age): self.name = name self.age = age t ...