bzoj1902【Zju2116】 Christopher
题意:http://www.lydsy.com/JudgeOnline/problem.php?id=1902
sol :一眼可以看出此题应用了lucas定理(逃~
将n,m都化为p进制,记为a[],b[]
则对于我们所求的C(n,m)%p,有C(n,m)=∏ (i from 1 to n) (p^i)*(C(a[i],b[i]))%p
若C(n,m)为p的倍数,则存在某一位b[i]>a[i]
即此题要求有多少个<n的数,且其p进制下存在某一位比n的p进制的对应位大
求出a[]后直接数位dp即可
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
const int Mx=;
struct Node
{
int n,g[];
void pre(int k) {n=; g[]=k;}
Node operator*(const int &b)
{
Node c; int y=; c.n=n;
if(!b) { c.pre(); return c; }
for(int i=;i<=n;i++) { y+=g[i]*b; c.g[i]=y%; y/=; }
while(y) { c.g[++c.n]=y%; y/=; }
return c;
}
Node operator+(const Node &b)
{
Node c; int y=,p;
if(n>b.n)
{
c.n=n; for(int i=;i<=n;i++) c.g[i]=g[i]; p=b.n;
for(int i=;i<=b.n;i++) { y+=b.g[i]+c.g[i]; c.g[i]=y%; y/=; }
while(y&&p<n) { y+=c.g[++p]; c.g[p]=y%; y/=; }
}
else
{
c.n=b.n; for(int i=;i<=b.n;i++) c.g[i]=b.g[i]; p=n;
for(int i=;i<=n;i++) { y+=g[i]+c.g[i]; c.g[i]=y%; y/=; }
while(y&&p<b.n) { y+=c.g[++p]; c.g[p]=y%; y/=; }
}
if(y) c.g[++c.n]=y;
return c;
}
int operator/(const int &b)
{
int y=;
for(int i=n;i>=;i--)
{
y=y*+g[i];
if (y<b) g[i]=;
else {g[i]=y/b; y%=b;}
}
while(n>&&!g[n]) n--;
return y;
}
void read()
{
char s[Mx]; scanf("%s",s+); n=strlen(s+);
for(int i=;i<=n;i++) g[n+-i]=s[i]-'';
}
} x,mul,ans,f[Mx];
int p,a[Mx],cnt;
int main()
{
x.read(); scanf("%d",&p);
while(x.n!=||x.g[]) a[++cnt]=x/p;
f[].pre(),mul.pre(),ans.pre();
for(int i=;i<cnt;i++)
{
f[i]=mul*(p--a[i]);
f[i]=f[i]+f[i-]*(a[i]+);
mul=mul*p;
}
for(int i=cnt;i>;i--) ans=ans+f[i-]*a[i];
for(int i=ans.n;i>=;i--) printf("%d",ans.g[i]);
return ;
}
bzoj1902【Zju2116】 Christopher的更多相关文章
- 【NLP】揭秘马尔可夫模型神秘面纱系列文章(一)
初识马尔可夫和马尔可夫链 作者:白宁超 2016年7月10日20:34:20 摘要:最早接触马尔可夫模型的定义源于吴军先生<数学之美>一书,起初觉得深奥难懂且无什么用场.直到学习自然语言处 ...
- 【NLP】揭秘马尔可夫模型神秘面纱系列文章(二)
马尔可夫模型与隐马尔可夫模型 作者:白宁超 2016年7月11日15:31:11 摘要:最早接触马尔可夫模型的定义源于吴军先生<数学之美>一书,起初觉得深奥难懂且无什么用场.直到学习自然语 ...
- 【NLP】揭秘马尔可夫模型神秘面纱系列文章(三)
向前算法解决隐马尔可夫模型似然度问题 作者:白宁超 2016年7月11日22:54:57 摘要:最早接触马尔可夫模型的定义源于吴军先生<数学之美>一书,起初觉得深奥难懂且无什么用场.直到学 ...
- 【NLP】揭秘马尔可夫模型神秘面纱系列文章(四)
维特比算法解决隐马尔可夫模型解码问题(中文句法标注) 作者:白宁超 2016年7月12日14:08:28 摘要:最早接触马尔可夫模型的定义源于吴军先生<数学之美>一书,起初觉得深奥难懂且无 ...
- 【NLP】揭秘马尔可夫模型神秘面纱系列文章(五)
向前向后算法解决隐马尔可夫模型机器学习问题 作者:白宁超 2016年7月12日14:28:10 摘要:最早接触马尔可夫模型的定义源于吴军先生<数学之美>一书,起初觉得深奥难懂且无什么用场. ...
- 【翻译】理解 LSTM 网络
目录 理解 LSTM 网络 递归神经网络 长期依赖性问题 LSTM 网络 LSTM 的核心想法 逐步解析 LSTM 的流程 长短期记忆的变种 结论 鸣谢 本文翻译自 Christopher Olah ...
- 【翻译】理解 LSTM 及其图示
目录 理解 LSTM 及其图示 本文翻译自 Shi Yan 的博文 Understanding LSTM and its diagrams,原文阐释了作者对 Christopher Olah 博文 U ...
- Python高手之路【六】python基础之字符串格式化
Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存.[PEP-3101] This ...
- 【原】谈谈对Objective-C中代理模式的误解
[原]谈谈对Objective-C中代理模式的误解 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 这篇文章主要是对代理模式和委托模式进行了对比,个人认为Objective ...
随机推荐
- CentOS6.5下载地址
http://linux.xitongxz.net:808/201603/CentOS-6.5-x86_64-bin-DVD1.iso
- 移动端调试利器-vConsole
现在移动端开发越来越火,随之而来的问题也越来越多,今天给大家介绍一款移动端调试神器,vconsole. 一.先引用文件,可以从https://www.bootcdn.cn/vConsole/下载,也可 ...
- Wordpress菜单函数wp_nav_menu各参数详解及示例
Wordpress菜单函数wp_nav_menu各参数详解及示例 注册菜单 首先要注册菜单,将以下函数添加至function.php函数里 register_nav_menus(array( ...
- 升级win10后电脑经常自动重启的问题
升级win10后用户体验度确实比win7强了很多,但是电脑无故的重启,让人无法接受,下面就介绍win10电脑自动重启问题的解决方案 问题分析: 遇到这种情况主要是硬件与系统不兼容所致 解决方案: 1, ...
- 使用Servlet根据浏览器request的get方法获取值,将磁盘中与之对应的json数据删除的方法
package com.swift; import java.io.BufferedReader; import java.io.File; import java.io.FileInputStrea ...
- 1143: [CTSC2008]祭祀river
Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4018 Solved: 2048[Submit][Status][Discuss] Descript ...
- ubuntu16.04更换镜像源
1.备份原有 cp /etc/apt/sources.list /etc/apt/sources.list.old 2.打开阿里巴巴镜像源: https://opsx.alibaba.com/mir ...
- k8s的service简述
k8s向集群外部暴露端口的3种方式: 1.service->nodePort :仅暴露一个宿主机端口,用于集群外部访问,因为此操作被写入各个节点的iptables或ipvs规则当中,可以用任意一 ...
- 最新Python3.6从入门到高级进阶实战视频教程
点击了解更多Python课程>>> 最新Python3.6从入门到高级进阶实战视频教程 第1篇 Python入门导学 第2篇 Python环境装置 第3篇 了解什么是写代码与Pyth ...
- 配置管理-SpringCloudConfig
1.搭建配置管理服务 添加依赖 <dependencies> <dependency> <groupId>org.springframework.cloud< ...