Description

YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域。简单起见,可以将YT市看作一个
正方形,每一个区域也可看作一个正方形。从而,YT城市中包括(n+1)×(n+1)个交叉路口和2n×(n+1)条双向道路
(简称道路),每条双向道路连接主干道上两个相邻的交叉路口。下图为一张YT市的地图(n = 2),城市被划分为2
×2个区域,包括3×3个交叉路口和12条双向道路。 小Z作为该市的市长,他根据统计信息得到了每天上班高峰期
间YT市每条道路两个方向的人流量,即在高峰期间沿着该方向通过这条道路的人数。每一个交叉路口都有不同的海
拔高度值,YT市市民认为爬坡是一件非常累的事情,每向上爬h的高度,就需要消耗h的体力。如果是下坡的话,则
不需要耗费体力。因此如果一段道路的终点海拔减去起点海拔的值为h(注意h可能是负数),那么一个人经过这段路
所消耗的体力是max{0, h}(这里max{a, b}表示取a, b两个值中的较大值)。 小Z还测量得到这个城市西北角的交
叉路口海拔为0,东南角的交叉路口海拔为1(如上图所示),但其它交叉路口的海拔高度都无法得知。小Z想知道在
最理想的情况下(即你可以任意假设其他路口的海拔高度),每天上班高峰期间所有人爬坡所消耗的总体力和的最
小值。

Input

第一行包含一个整数n,含义如上文所示。接下来4n(n + 1)行,每行包含一个非负整数分别表示每一条道路每一个
方向的人流量信息。输入顺序:n(n + 1)个数表示所有从西到东方向的人流量,然后n(n + 1)个数表示所有从北到
南方向的人流量,n(n + 1)个数表示所有从东到西方向的人流量,最后是n(n + 1)个数表示所有从南到北方向的人
流量。对于每一个方向,输入顺序按照起点由北向南,若南北方向相同时由西到东的顺序给出(参见样例输入)。

Output

仅包含一个数,表示在最理想情况下每天上班高峰期间所有人爬坡所消耗的总体力和(即总体力和的最小值),结
果四舍五入到整数。

Sample Input

1
1
2
3
4
5
6
7
8

Sample Output

3
/*
首先可以大胆推一波结论:海拔高度非0即1。
那么即相当于找一条分界线,把图分成两部分,平面图最小割!
但是这个图是有向图,所以正反都要建边,在纸上画一画就是到怎么搞了。
*/
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#define N 1000010
using namespace std;
int head[N],dis[N],vis[N],n,S,T,cnt;
struct node{int v,w,pre;}e[N*];
struct Node{
int pos,dis;
bool operator< (const Node&x) const{
return dis>x.dis;
}
};priority_queue<Node> q;
void add(int u,int v,int w){
e[++cnt].v=v;e[cnt].w=w;e[cnt].pre=head[u];head[u]=cnt;
}
int Dij(){
memset(dis,/,sizeof(dis));
q.push((Node){S,});dis[S]=;
while(!q.empty()){
int u=q.top().pos;q.pop();
if(vis[u]) continue;
vis[u]=;
for(int i=head[u];i;i=e[i].pre)
if(dis[e[i].v]>dis[u]+e[i].w){
dis[e[i].v]=dis[u]+e[i].w;
q.push((Node){e[i].v,dis[e[i].v]});
}
}
return dis[T];
}
int id(int x,int y){
if(!y||x==n+) return S;
if(!x||y==n+) return T;
return (x-)*n+y;
}
int main(){
scanf("%d",&n);
S=;T=n*n+;
int x;
for(int i=;i<=n;i++) for(int j=;j<=n;j++) scanf("%d",&x),add(id(i+,j),id(i,j),x);
for(int i=;i<=n;i++) for(int j=;j<=n;j++) scanf("%d",&x),add(id(i,j),id(i,j+),x);
for(int i=;i<=n;i++) for(int j=;j<=n;j++) scanf("%d",&x),add(id(i,j),id(i+,j),x);
for(int i=;i<=n;i++) for(int j=;j<=n;j++) scanf("%d",&x),add(id(i,j+),id(i,j),x);
printf("%d",Dij());
return ;
}

海拔(bzoj 2007)的更多相关文章

  1. [BZOJ 2007] [Noi2010] 海拔 【平面图最小割(对偶图最短路)】

    题目链接:BZOJ - 2007 题目分析 首先,左上角的高度是 0 ,右下角的高度是 1.那么所有点的高度一定要在 0 与 1 之间.然而选取 [0, 1] 的任何一个实数,都可以用整数 0 或 1 ...

  2. BZOJ 2007: [Noi2010]海拔

    2007: [Noi2010]海拔 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2410  Solved: 1142[Submit][Status] ...

  3. BZOJ 2007 海拔

    http://www.lydsy.com/JudgeOnline/problem.php?id=2007 思路: 显然海拔是一片0,另一片1,答案就是01的分界线的流量. 本题中的图是平面图,所以求最 ...

  4. 【BZOJ 2007】 2007: [Noi2010]海拔 (平面图转对偶图+spfa)

    2007: [Noi2010]海拔 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2504  Solved: 1195 Description YT市 ...

  5. 洛谷 P2046 BZOJ 2007 海拔(NOI2010)

    题目描述 YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作 一个正方形,每一个区域也可看作一个正方形.从而,YT城市中包括(n+1)×(n+1)个 ...

  6. BZOJ 2007 海拔(平面图最小割-最短路)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2007 题意:给出一个n*n的格子,那么顶点显然有(n+1)*(n+1)个.每两个相邻顶点 ...

  7. 2007: [Noi2010]海拔 - BZOJ

    Description YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作一个正方形,每一个区域也可看作一个正方形.从而,YT城市中包括(n+1)× ...

  8. ●BZOJ 2007 NOI 2010 海拔

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2007 题解: 网络流.最小割.对偶图 奇妙的题 ~ 种种原因导致了高度要么为 0,要么为 1 ...

  9. BZOJ.2007.[NOI2010]海拔(最小割 对偶图最短路)

    题目链接 想一下能猜出,最优解中海拔只有0和1,且海拔相同的点都在且只在1个连通块中. 这就是个平面图最小割.也可以转必须转对偶图最短路,不然只能T到90分了..边的方向看着定就行. 不能忽略回去的边 ...

  10. bzoj 2007 [Noi2010]海拔——最小割转最短路

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2007 一个点的高度一定不是0就是1.答案一定形如一个左上角的连通块全是0的点.一个右下角的连 ...

随机推荐

  1. java Html&JavaScript面试题:判断第二个日期比第一个日期大

    如何用脚本判断用户输入的的字符串是下面的时间格式2004-11-21 必须要保证用户的输入是此格式,并且是时间,比如说月份不大于12等等,另外我需要用户输入两个,并且后一个要比前一个晚,只允许用JAV ...

  2. 关于HTML(含HTML5)的块级元素和行级(内联)元素总结

    1.首先我们要知道什么是块级元素和行级(内联)元素? 块级(block)元素的特点: ①总是在新行上开始: ②高度,行高以及外边距和内边距都可控制: ③宽度缺省是它的容器的100%,除非设定一个宽度: ...

  3. vue项目跨域问题

    跨域 了解同源政策:所谓"同源"指的是"三个相同". 协议相同 域名相同 端口相同 解决跨域 jsonp 缺点:只能get请求 ,需要修改B网站的代码 cors ...

  4. zabbix监控系统时间的问题

    分类: 监控 2013-03-19 21:40:11   发现zabbix监控系统时间的一个问题!zabbix监控系统时间用的key是system.localtime,返回当前的系统时间,而配置tig ...

  5. linux 下备份mysql数据库

    今天老板让备份数据库没办法自己折腾吧,下面把折腾的结果总结总结. 数据库备份思路: 1.编写脚本 2.执行脚本  哈哈,是不是很简单,打开冰箱,放入大象,关上.下面我是具体操作. 一.编写脚本 1.设 ...

  6. Linux问题分析或解决_samba无法连接

    1. windows设置方面问题 问题:window能连接部分服务器的samba共享,一部分无法连接.报错如截图. 解决:前提---其他人连接都没有问题,发现有问题的连接服务器的电脑是win10,而w ...

  7. PS1

    linux系统终端命令提示符设置(PS1)记录 - 散尽浮华 - 博客园 https://www.cnblogs.com/kevingrace/p/5985970.html PS(Prompt Sig ...

  8. float浮动布局(慕课网CSS笔记 + css核心技术详解第四章)

    ---------------------------------------------------------------------- CSS中的position: CSS三种布局方式: 标准流 ...

  9. 学习BootStrap3.3.4——敲完全局CSS样式

    历时7小时- -(算上晚饭)终于敲完BootStrap CSS样式部分.还是第一次这么持久的敲纯前端,连JS都没有. 正好趁这机会熟悉了Sublime,主要是各个快捷键的用法.目前用到最多的: 而且s ...

  10. 命令执行sql

    从外网把数据库用导出脚本的方式导出来了,280M的样子,导是导出来了,但是在本机执行sql脚本的时候,直接就是out of memory,之前执行60M的脚本没出过这问题,直接双击打开.sql脚本文件 ...