【dp】P1077 摆花
基础DP题
题目描述
小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共m盆。通过调查顾客的喜好,小明列出了顾客最喜欢的n种花,从1到n标号。为了在门口展出更多种花,规定第i种花不能超过ai盆,摆花时同一种花放在一起,且不同种类的花需按标号的从小到大的顺序依次摆列。
试编程计算,一共有多少种不同的摆花方案。
注意:因为方案数可能很多,请输出方案数对1000007取模的结果。
对于100%数据,有0<n≤100,0<m≤100,0≤ai≤100。
我的状态是表示前i盆花中放置j朵的方案数,所以
。
那么就不难得到 且
。其中pre是a的前缀和。
(不过我也很好奇的是为什么j要取0,按理说f[i,0](i>1)=0啊?也去和ARZhu聊了聊,没有搞出来个直观意义)
(有dalao肯评论一下吗!)
【dp】P1077 摆花的更多相关文章
- 洛谷P1077 摆花(背包dp)
P1077 摆花 题目描述 小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共m盆.通过调查顾客的喜好,小明列出了顾客最喜欢的n种花,从1到n标号.为了在门口展出更多种花,规定第i种花不能 ...
- P1077 摆花
P1077 摆花 题目描述 小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共 m 盆.通过调查顾客的喜好,小明列出了顾客最喜欢的 n 种花,从 1 到 n 标号.为了在门口展出更多种花, ...
- luogu P1077 摆花 x
P1077 摆花 题目描述 小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共m盆.通过调查顾客的喜好,小明列出了顾客最喜欢的n种花,从1到n标号.为了在门口展出更多种花,规定第i种花不能 ...
- 洛谷 P1077 摆花 (背包DP)
题意:有\(n\)种花,每种花有\(a_i\)盆,现在要摆\(m\)盆花,花的种类从\([1,n]\)有序排放,问有多少种方案数. 题解:这题可以借用01背包的思路,感觉更好想一点,我们首先枚举\(n ...
- 洛谷 P1077 摆花
题目描述 小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共m盆.通过调查顾客的喜好,小明列出了顾客最喜欢的n种花,从1到n标号.为了在门口展出更多种花,规定第i种花不能超过ai盆,摆花时 ...
- 洛谷P1077 摆花
题目描述 小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共m盆.通过调查顾客的喜好,小明列出了顾客最喜欢的n种花,从1到n标号.为了在门口展出更多种花,规定第i种花不能超过ai盆,摆花时 ...
- 洛谷P1077 摆花——题解
题目传送 题目大意:有按顺序放的n种花,相同种类的花放一起,每种花最多放ai盆,共放了m盆花,求放花方案数. 求方案个数一般有以下思路:1.搜索:2.递推/动态规划:3.贪心:4.分治... 玄学估计 ...
- 洛谷—— P1077 摆花
https://www.luogu.org/problem/show?pid=1077 题目描述 小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共m盆.通过调查顾客的喜好,小明列出了顾客 ...
- luogu P1077 摆花
这道题看似好难,但是其实很简单 先把题目中所让你设的变量都设好,该输入的都输入 你会发现这道题好像成功了一半,为什么呢??? 因为设完后你会发现你不需要再添加任何变量,已经足够了. 可能最难的地方,就 ...
随机推荐
- hls流媒体视频防盗实现
HLS流媒体视频防盗实现 一.Windows安装FFmpeg 1.1 安装版本 1.1.1 网址:https://ffmpeg.org/ 1.1.2 选择Windows版本:https://ffmpe ...
- JS高级学习历程-15
昨天内容回顾 面向对象的私有成员.静态成员 私有成员:在构造函数里边定义局部变量,就是私有成员. 静态成员:在js里边,函数就是对象,可以通过给函数对象声明成员方式声明静态成员. 原型继承 关键字:p ...
- Django-Rest-Framework的序列化之serializers 序列化组件
Django-Rest-Framework的序列化之serializers 序列化组件 restful framework 正常的序列化 from django.http import HttpRes ...
- [软件工程基础]2017.11.06 第十次 Scrum 会议
具体事项 项目交接燃尽图 每人工作内容 成员 已完成的工作 计划完成的工作 工作中遇到的困难 游心 #62 调试生成报告代码:#60 整理物理网站上的实验流程:#71 撰写报告生成搭建文档: 李煦通 ...
- 洛谷P4238【模板】多项式求逆
洛谷P4238 多项式求逆:http://blog.miskcoo.com/2015/05/polynomial-inverse 注意:直接在点值表达下做$B(x) \equiv 2B'(x) - A ...
- tyvj P4877 _1.组合数
时间限制:1s 内存限制:256MB [问题描述] 从m个不同元素中,任取n(n≤m)个元素并成一组,叫做从m个不同元素中取出n个元素的一个组合:从m个不同元素中取出n(n≤m)个元素的所有组合的个数 ...
- ORACLE行转列通用过程(转)
1.使用视图 SQL code? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 create or r ...
- ios 绘制虚线 CGContextSetLineDash的使用
画虚线需要用到函数: CGContextSetLineDash 此函数需要四个参数: context – 这个不用多说 phase - 稍后再说 lengths – 指明虚线是如何交替绘制,具体看例子 ...
- Setting 之dashboard 点击跳转流程
设置的主界面的可以通过修改xml中的dashboard_categaries.xml 文件实现,在DashboardSummary.java 文件中的rebuildUI()方法中将xml对应的实体类转 ...
- Windows Azure 配置Active Directory 主机(2)
前一篇概况给大家介绍了,在云端部署一台DC 需要满足一些条件,接下来进入正题,云端VM安装域控制器具体步骤. 步骤1 :验证 主DC 的静态 IP 地址 1.登录到 Corp 网络上的 主DC. 2. ...