基于matlab的蓝色车牌定位与识别---识别
接着昨天的工作,把最后一部分识别讲完。
关于字符识别这块,一种最省事的办法是匹配识别,将所得的字符和自己的标准字符库相减,计算所得结果,值最小的即为识别的结果。不过这种方法是在所得字符较为标准的情况,由于众多因素影响,切割出来的字符往往不是标准的,因此识别效果也不好。本次采用的BP神经网络方法,至于像其他的分类器方法,没有尝试,这里就不说了。
利用神经网络的方法的思路也比较清晰,将已有的字符库输入到神经网络的输入口进行训练,然后用训练好的神经网络对待识别的字符继续识别,输出识别结果。matlab里面已经集成好神经网络,直接调用即可。
这里说明一下,考虑到减小输入量,这里把输入的字符划分为八行四列,计算每块的总数,然后把这些数作为样本输入到神经网络。
字符识别部分代码:
for i=:
ii=int2str(i);
fname=strcat('D:\1_2学习\图像处理\车牌识别\matlab_car_plate-recognization\char_result\character_test\cha&num\',ii,'.bmp');
image=imread(fname);
change_image=catch2chi2character(image);
P(:,i)=change_image;
end
T = [eye() eye() eye() eye()];
alphabet = P;
targets = T; [R,Q] = size(alphabet);
[S2,Q] = size(targets);
S1=;% purelin tansig
net = newff(minmax(alphabet),[S1,S2],{ 'purelin' 'purelin' },'trainscg','learngdm');%trainscg traingdx
net.inputWeights{,}.initFcn ='randnr';
net.layerWeights{,}.initFcn ='randnr';
net.performFcn = 'sse';
net.trainParam.goal = 0.1;
net.trainParam.show = ;
net.trainParam.epochs = ;
net.trainParam.mc = 0.95;
net.trainparam.lr=0.015;%0.01 %设置学习速率
P = alphabet;
T = targets;
[net,tr] = train(net,P,T);%训练好的神经网络
函数catch2chi2character:
function lett=catch2chi2character(I1)
%% 训练样本前期处理
% bw_7050=imresize(I1,[ ],'nearest');%将图片统一划为50*25大小
[m n]=size(I1);
bw_7050=I1;
% figure,imshow(I1);
histrow=sum(bw_7050'); %计算水平投影
histcol=sum(bw_7050); %计算竖直投影
for i=:m
if(histrow(i)>)
row_x=i;
break;
end
end
for i=:n
if(histcol(i)>)
col_x=i;
break;
end
end
for i=n:-:
if(histcol(i)>)
col_y=i;
break;
end
end
for i=m:-:
if(histrow(i)>)
row_y=i;
break;
end
end
picture(:,:)=bw_7050(row_x:row_y,col_x:col_y);
bw_7050=imresize(picture,[ ],'nearest');%将图片统一划为50*25大小
% figure,imshow(bw_7050) for cnt=:%粗网格特征作为输入矢量
for cnt2=:
Atemp=sum(bw_7050((cnt*-:cnt*),(cnt2*-:cnt2*))); %获取字符的统计特征
lett((cnt-)*+cnt2)=sum(Atemp);
end
end
ma=max(max(lett));
mi=min(min(lett));
lett=(lett-mi)/(ma); histrow=sum(bw_7050'); %计算水平投影
histcol=sum(bw_7050); %计算竖直投影 lett=lett';
end
字符识别:
for i=:
ii=int2str(i);
fname=strcat('D:\1_2学习\图像处理\车牌识别\matlab_car_plate-recognization\char_result\',ii,'.bmp');
image=imread(fname);
[size_x size_y]=size(image);
max_num=max(max(image));
min_num=min(min(image))-;
for ix=:size_x
for ij=:size_y
if image(ix,ij)>min_num+(max_num-min_num)/
image(ix,ij)=;
else
image(ix,ij)=;
end
end
end
% I2 = bwmorph(image,'remove'); %提取边缘
% image_main = bwmorph(I2,'skel',Inf); %骨架化
% figure,imshow(image)
change_image=catch2chi2character(image);
Ptest(:,i-)=change_image;
end
[a,b]=max(sim(net,Ptest));
disp(b);
liccode=char(['A':'H' 'J':'N' 'P':'Z' '':'']); %建立自动识别字符代码表
for i=:
str(i)=liccode(b(i));
end
汉字识别和字符差不多,这里就不贴上去了。。
总结一下:采用这种方式,基本上字符都可以识别出来。考虑到样本采集、数字处理过程中对字符的影响,像字符O和D,一定情况下无法识别。这也是程序所存在的问题,即没有对相似的字符进行区分。。汉字也存在这种情况,左右结构的也没有考虑。因此想做到完整还有好多工作要做。。
这个是简单的GUI结果图:

总结一下:
1.获取的车牌规格要统一,否则很难把握好车牌定位这块。
2.切割字符关键在于让程序确定在车牌的位置,这样切割起来就比较方便了。不足的地方在于从定位到切割这块要耗费一点时间,感觉是自己程序太过复杂?不知道有没比较简单的思路没。
3.字符识别想要做的好,工作还是比较多的。这次神经网络训练过程中参数设置很重要,土办法是去试,不知道有没有科学点的办法。。
4.算是对这段时间来的一个总结,里面涉及到的内容还是很多的,多看看模式识别方面的知识。
结束。。2015-5-11
基于matlab的蓝色车牌定位与识别---识别的更多相关文章
- 【原】基于matlab的蓝色车牌定位与识别---绪论
本着对车牌比较感兴趣,自己在课余时间摸索关于车牌的定位与识别,现将自己所做的一些内容整理下,也方便和大家交流. 考虑到车牌的定位涉及到许多外界的因素,因此有必要对车牌照的获取条件进行一些限定: 一.大 ...
- 基于matlab的蓝色车牌定位与识别---定位
接着昨天的工作继续.定位的过程有些是基于车牌的颜色进行定位的,自己则根据数字图像一些形态学的方法进行定位的. 合着代码进行相关讲解. 1.相对彩色图像进行灰度化,然后对图像进行开运算.再用小波变换获取 ...
- 基于matlab的蓝色车牌定位与识别---分割
接着上面的工作,接下去就该是进行字符分割了.考虑到为了后面的字符识别,因此在这部分需要实现的目标是需要把车牌的边框全部切除,对重新定位的车牌进行垂直方向水平方向调整,保证字符是正的.最后才是字符的分割 ...
- 车牌识别LPR(四)-- 车牌定位
第四篇:车牌定位 车牌定位就是采用一系列图像处理或者数学的方法从一幅图像中将车牌准确地定位出来.车牌定位提取出的车牌是整个车牌识别系统的数据来源,它的效果的好坏直接影响到整个系统的表现,只有准确地定位 ...
- 数字图像处理:基于MATLAB的车牌识别项目 标签: 图像处理matlab算法 2017-06-24 09:17 98人阅读 评论(0)
学过了数字图像处理,就进行一个综合性强的小项目来巩固一下知识吧.前阵子编写调试了一套基于MATLAB的车牌识别的项目的代码.今天又重新改进了一下代码,识别的效果好一点了,也精简了一些代码.这里没有使用 ...
- 基于MATLAB的手写公式识别(2)
基于MATLAB的手写公式识别 图像的预处理(除去噪声.得到后续定位分割所需的信息.) 预处理其本质就是去除不需要的噪声信息,得到后续定位分割所需要的图像信息.图像信息在采集的过程中由于天气环境的影响 ...
- 基于MATLAB的人脸识别算法的研究
基于MATLAB的人脸识别算法的研究 作者:lee神 现如今机器视觉越来越盛行,从智能交通系统的车辆识别,车牌识别到交通标牌的识别:从智能手机的人脸识别的性别识别:如今无人驾驶汽车更是应用了大量的机器 ...
- 基于MATLAB的手写公式识别(3)
基于MATLAB的手写公式识别 图像的膨胀化,获取边缘(思考是否需要做这种处理,初始参考样本相对简单) %膨胀 imdilate(dilate=膨胀/扩大) clc clear A1=imread(' ...
- 基于MATLAB的手写公式识别(9)
基于MATLAB的手写公式识别(9) 1.2图像的二值化 close all; clear all; Img=imread('drink.jpg'); %灰度化 Img_Gray=rgb2gray(I ...
随机推荐
- 剑指Offer的学习笔记(C#篇)-- 替换空格
题目描述 请实现一个函数,将一个字符串中的每个空格替换成“%20”.例如,当字符串为We Are Happy.则经过替换之后的字符串为We%20Are%20Happy. 一 . 自己的想法 老实说,貌 ...
- Visio画图(一):UML用例图
Visio画图(一):UML用例图 1.找到UML用例图 A.有网状态 第一步 在搜索框内输入用例图进行搜索. 第二步,移动鼠标直到找到用例图 B.无网状态 第一步 点击特别推荐旁的类别选项 第二步 ...
- 《SQL 进阶教程》case :用一条 SQL 语句进行不同条件的统计
进行不同条件的统计是case表达式的著名用法之一 select name,sum(case when sex = 1 then population else 0 end) as cnt_m,sum( ...
- D-温暖的签到题
链接:https://ac.nowcoder.com/acm/contest/892/D 题意: 给你一个长度为n的序列,初始为1,2,3...n,对其进行m次操作. 操作有两种: 1 l r 表示 ...
- Codeforces 1114F(欧拉函数、线段树)
AC通道 要点 欧拉函数对于素数有一些性质,考虑将输入数据唯一分解后进行素数下的处理. 对于素数\(p\)有:\(\phi(p^k)=p^{k-1}*(p-1)=p^k*\frac{p-1}{p}\) ...
- CSS——制作天天生鲜登陆页面
这个登陆页面主要是有一个form表单,其他的和首页差不多的. login.html: <!DOCTYPE html> <html lang="en"> &l ...
- (转)AIX 中 Paging Space 使用率过高的分析与解决
AIX 中 Paging Space 使用率过高的分析与解决 原文:https://www.ibm.com/developerworks/cn/aix/library/au-cn-pagingspac ...
- Exception in thread "main" java.lang.UnsupportedClassVersionError: com/google/common/base/Function : Unsupported major.minor version 52.0的解决办法(图文详解)
不多说,直接上干货! 问题详情 Exception in thread "main" java.lang.UnsupportedClassVersionError: com/goo ...
- 为什么数据库ID不能作为URL中的标识符
最近公司在进行网站的SEO优化,将所有主要页面的URL统一更改为新的格式,其中重要的一项改变是将所有URL的标识符统一为ID,例如过去我们的一个用户的公共页面URL是这样的 https://www.e ...
- 不同ORM新的理解
对于ORM你怎么理解?你用过的ORM有什么区别?这是面试的时候基本上会问的问题. 问题很简单,本文不在阐述.本文主要讨论Dapper 和 EF Core First的区别. 从直观上来看两个都是ORM ...