Python机器学习--降维
主成分分析(PCA)



测试
# -*- coding: utf-8 -*-
"""
Created on Thu Aug 31 14:21:51 2017 @author: Administrator
""" import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.datasets import load_iris data = load_iris()
y = data.target
X = data.data
pca = PCA(n_components=2)
reduced_X = pca.fit_transform(X) red_x, red_y = [], []
blue_x, blue_y = [], []
green_x, green_y = [], [] for i in range(len(reduced_X)):
if y[i] == 0:
red_x.append(reduced_X[i][0])
red_y.append(reduced_X[i][1])
elif y[i] == 1:
blue_x.append(reduced_X[i][0])
blue_y.append(reduced_X[i][1])
else:
green_x.append(reduced_X[i][0])
green_y.append(reduced_X[i][1]) plt.scatter(red_x, red_y, c='r', marker='x')
plt.scatter(blue_x, blue_y, c='b', marker='D')
plt.scatter(green_x, green_y, c='g', marker='.')
plt.show()
非负矩阵分解(NMF)






测试
# -*- coding: utf-8 -*-
"""
Created on Thu Aug 31 14:24:26 2017 @author: Administrator
""" from numpy.random import RandomState
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_olivetti_faces
from sklearn import decomposition n_row, n_col = 2, 3
n_components = n_row * n_col
image_shape = (64, 64) ###############################################################################
# Load faces data
dataset = fetch_olivetti_faces(shuffle=True, random_state=RandomState(0))
faces = dataset.data ###############################################################################
def plot_gallery(title, images, n_col=n_col, n_row=n_row):
plt.figure(figsize=(2. * n_col, 2.26 * n_row))
plt.suptitle(title, size=16) for i, comp in enumerate(images):
plt.subplot(n_row, n_col, i + 1)
vmax = max(comp.max(), -comp.min()) plt.imshow(comp.reshape(image_shape), cmap=plt.cm.gray,
interpolation='nearest', vmin=-vmax, vmax=vmax)
plt.xticks(())
plt.yticks(())
plt.subplots_adjust(0.01, 0.05, 0.99, 0.94, 0.04, 0.) plot_gallery("First centered Olivetti faces", faces[:n_components])
############################################################################### estimators = [
('Eigenfaces - PCA using randomized SVD',
decomposition.PCA(n_components=6,whiten=True)), ('Non-negative components - NMF',
decomposition.NMF(n_components=6, init='nndsvda', tol=5e-3)) # 设置k=6
] ############################################################################### for name, estimator in estimators:
print("Extracting the top %d %s..." % (n_components, name))
print(faces.shape)
estimator.fit(faces)
components_ = estimator.components_
plot_gallery(name, components_[:n_components]) plt.show()
结果
Extracting the top 6 Eigenfaces - PCA using randomized SVD...
(400, 4096)
Extracting the top 6 Non-negative components - NMF...
(400, 4096)

Python机器学习--降维的更多相关文章
- Python机器学习:5.6 使用核PCA进行非线性映射
许多机器学习算法都有一个假设:输入数据要是线性可分的.感知机算法必须针对完全线性可分数据才能收敛.考虑到噪音,Adalien.逻辑斯蒂回归和SVM并不会要求数据完全线性可分. 但是现实生活中有大量的非 ...
- Python机器学习中文版
Python机器学习简介 第一章 让计算机从数据中学习 将数据转化为知识 三类机器学习算法 第二章 训练机器学习分类算法 透过人工神经元一窥早期机器学习历史 使用Python实现感知机算法 基于Iri ...
- Python机器学习中文版目录
建议Ctrl+D保存到收藏夹,方便随时查看 人工智能(AI)学习资料库 Python机器学习简介 第一章 让计算机从数据中学习 将数据转化为知识 三类机器学习算法 第二章 训练机器学习分类算法 透过人 ...
- 只需十四步:从零开始掌握 Python 机器学习(附资源)
分享一篇来自机器之心的文章.关于机器学习的起步,讲的还是很清楚的.原文链接在:只需十四步:从零开始掌握Python机器学习(附资源) Python 可以说是现在最流行的机器学习语言,而且你也能在网上找 ...
- Python机器学习笔记:sklearn库的学习
网上有很多关于sklearn的学习教程,大部分都是简单的讲清楚某一方面,其实最好的教程就是官方文档. 官方文档地址:https://scikit-learn.org/stable/ (可是官方文档非常 ...
- Python机器学习笔记:不得不了解的机器学习面试知识点(1)
机器学习岗位的面试中通常会对一些常见的机器学习算法和思想进行提问,在平时的学习过程中可能对算法的理论,注意点,区别会有一定的认识,但是这些知识可能不系统,在回答的时候未必能在短时间内答出自己的认识,因 ...
- 七步精通Python机器学习--转载
作者简介: Matthew Mayo 翻译:王鹏宇 开始.这是最容易令人丧失斗志的两个字.迈出第一步通常最艰难.当可以选择的方向太多时,就更让人两腿发软了. 从哪里开始? 本文旨在通过七个步骤, ...
- Python机器学习笔记:不得不了解的机器学习知识点(2)
之前一篇笔记: Python机器学习笔记:不得不了解的机器学习知识点(1) 1,什么样的资料集不适合用深度学习? 数据集太小,数据样本不足时,深度学习相对其它机器学习算法,没有明显优势. 数据集没有局 ...
- 只需十四步:从零开始掌握Python机器学习(附资源)
转载:只需十四步:从零开始掌握Python机器学习(附资源) Python 可以说是现在最流行的机器学习语言,而且你也能在网上找到大量的资源.你现在也在考虑从 Python 入门机器学习吗?本教程或许 ...
随机推荐
- 【Java_多线程并发编程】JUC原子类——4种原子类
根据修改的数据类型,可以将JUC包中的原子操作类可以分为4种,分别是: 1. 基本类型: AtomicInteger, AtomicLong, AtomicBoolean ;2. 数组类型: Atom ...
- 剑指Offer(书):调整数组顺序使奇数位于偶数前面
题目:输入一个整数数组,实现一个函数来调整该数组中数字的顺序,使得所有的奇数位于数组的前半部分,所有的偶数位于数组的后半部分,并保证奇数和奇数,偶数和偶数之间的相对位置不变. public void ...
- Codeforces Round #439 (Div. 2) C. The Intriguing Obsession
C. The Intriguing Obsession 题目链接http://codeforces.com/contest/869/problem/C 解题心得: 1.由于题目中限制了两个相同 ...
- JavaScript正则表达式-字符类
字符列表 在方括号内指定一个或者多个字符组成的字符列表,与字符列表中任意字符匹配,都被认为是匹配的.每次匹配只能匹配列表中的一个字符. str = "bird,head,fed,meadow ...
- PAT Basic 1025
1025 反转链表 给定一个常数K以及一个单链表L,请编写程序将L中每K个结点反转.例如:给定L为1→2→3→4→5→6,K为3,则输出应该为3→2→1→6→5→4:如果K为4,则输出应该为4→3→2 ...
- Linux下安装SaltStack
一.配置yum源和epel源 epel源下载地址:http://pan.baidu.com/s/1o7NJ26u 1.配置yum源 (1)上传操作系统镜像文件来配置yum源,挂载点目录为/yum mk ...
- Java-计算程序运行时间
package com.tj; @SuppressWarnings("unused") public class CountTime { public static void ma ...
- 路由重分发 最重要 最难 ccnp
路由重分发 多种协议之间 彼此学习到对方的路由 重分发好 结果好 重分发不好 结果最好是产生次优路径 最差事产生路由黑洞和环路 实例1: 重分发一般需要双向重分发 ...
- xtu数据结构 B. Get Many Persimmon Trees
B. Get Many Persimmon Trees Time Limit: 1000ms Memory Limit: 30000KB 64-bit integer IO format: %lld ...
- [android开发篇] 权限
Android 应用采用 Java 编程语言编写.Android SDK 工具将您的代码 — 连同任何数据和资源文件 — 编译到一个 APK:Android 软件包,即带有 .apk 后缀的存档文件中 ...