Xor-sequences CodeForces - 691E

题意:在有n个数的数列中选k个数(可以重复选,可以不按顺序)形成一个数列,使得任意相邻两个数异或的结果转换成二进制后其中1的个数是三的倍数。求可能形成的不同数列个数(只要选出的数列中,任意两个元素在原序列中的位置不同,就算作不同的序列,比如在原数列[1,1]中选1个,那么第一个1和第二个1要分开算)。

方法:

很容易列出dp方程:

dp[k][i]表示取了k个,最后一个在第i位。a[i][j]表示i和j异或结果转换成二进制后1的个数是否是3的倍数,1表示是,0表示否。

$dp[k][i]=dp[k-1][1]*a[1][i]+...dp[k-1][n]*a[n][i]$

注意,不是$dp[k][i]=dp[k-1][1]*a[1][i]+...+dp[k-1][i-1]*a[i-1][i]$(这道题是可以重复、不按顺序选的,这么写就是不重复、按顺序)

那么,这样的算法复杂度就是O(nk),太慢了,需要优化。

从小数据开始:

n=3时:

dp[1][1]=1
dp[1][2]=1
dp[1][3]=1 dp[2][1]=dp[1][1]*a[1][1]+dp[1][2]*a[2][1]+dp[1][3]*a[3][1]
dp[2][2]=dp[1][1]*a[1][2]+dp[1][2]*a[2][2]+dp[1][3]*a[3][2]
dp[2][3]=dp[1][1]*a[1][3]+dp[1][2]*a[2][3]+dp[1][3]*a[3][3] dp[3][1]=dp[2][1]*a[1][1]+dp[2][2]*a[2][1]+dp[2][3]*a[3][1]
dp[3][2]=dp[2][1]*a[1][2]+dp[2][2]*a[2][2]+dp[2][3]*a[3][2]
dp[3][3]=dp[2][1]*a[1][3]+dp[2][2]*a[2][3]+dp[2][3]*a[3][3] 很容易可以发现:
矩阵1
dp[1][1] dp[1][2] dp[1][3]
矩阵2
a[1][1] a[1][2] a[1][3]
a[2][1] a[2][2] a[2][3]
a[3][1] a[3][2] a[3][3]
矩阵1*矩阵2
dp[2][1] dp[2][2] dp[2][3]

更大的数据以此类推,因此很容易想到用矩阵快速幂优化。

而要求dp[k][],就要由dp[1][]乘k-1次矩阵2,可以改为算出来矩阵2的k-1次幂放入矩阵3,再将dp[1][]乘上矩阵3,得到的就是dp[k][]。最终答案就是dp[k][1]+..+dp[k][n]。

所以说...这个矩阵快速幂的题..居然不用自己去构造转移矩阵??

另外:

__builtin_popcountll:参照__builtin_popcount,那个是针对long整型的,这个是针对long long的

还有手动写的

 #include<cstdio>
#include<cstring>
#define md 1000000007
typedef long long LL;
LL n,k,anss;
LL a[];
struct Mat
{
LL data[][],x,y;
Mat()
{
memset(data,,sizeof(data));
x=y=;
}
Mat operator*(const Mat& b)
{
Mat temp;
LL i,j,k;
for(i=;i<=x;i++)
for(j=;j<=b.y;j++)
for(k=;k<=y;k++)
temp.data[i][j]=(data[i][k]*b.data[k][j]+temp.data[i][j])%md;
temp.x=x;
temp.y=b.y;
return temp;
}
Mat& operator*=(const Mat& b)
{
return (*this)=(*this)*b;
}
Mat& operator=(const Mat& b)
{
memcpy(data,b.data,sizeof(data));
x=b.x;
y=b.y;
return *this;
}
}ma,o,bbb,ccc;
Mat pow(const Mat& a,LL b)
{
Mat ans=o;
if(b==) return ans;
Mat base=a;
while(b!=)
{
if(b&!=) ans*=base;
base*=base;
b>>=;
}
return ans;
}
int main()
{
LL i,j;
scanf("%I64d%I64d",&n,&k);
for(i=;i<=n;i++)
scanf("%I64d",&a[i]);
ma.x=ma.y=n;
for(i=;i<=n;i++)
for(j=;j<=n;j++)
ma.data[i][j]=(__builtin_popcountll(a[i]^a[j])%==);
o.x=o.y=n;
for(i=;i<=n;i++)
for(j=;j<=n;j++)
o.data[i][j]=(i==j);
bbb=pow(ma,k-);
ccc.x=;ccc.y=n;
for(i=;i<=n;i++)
ccc.data[][i]=;
ccc*=bbb;
for(i=;i<=n;i++)
anss=(anss+ccc.data[][i])%md;
printf("%I64d",anss);
return ;
}

Xor-sequences CodeForces - 691E || 矩阵快速幂的更多相关文章

  1. codeforces 691E 矩阵快速幂+dp

    传送门:https://codeforces.com/contest/691/problem/E 题意:给定长度为n的序列,从序列中选择k个数(可以重复选择),使得得到的排列满足xi与xi+1异或的二 ...

  2. Codeforces 691E题解 DP+矩阵快速幂

    题面 传送门:http://codeforces.com/problemset/problem/691/E E. Xor-sequences time limit per test3 seconds ...

  3. Codeforces Round #257 (Div. 2) B. Jzzhu and Sequences (矩阵快速幂)

    题目链接:http://codeforces.com/problemset/problem/450/B 题意很好懂,矩阵快速幂模版题. /* | 1, -1 | | fn | | 1, 0 | | f ...

  4. Codeforces 450B div.2 Jzzhu and Sequences 矩阵快速幂or规律

    Jzzhu has invented a kind of sequences, they meet the following property: You are given x and y, ple ...

  5. CodeForces - 691E Xor-sequences 【矩阵快速幂】

    题目链接 http://codeforces.com/problemset/problem/691/E 题意 给出一个长度为n的序列,从其中选择k个数 组成长度为k的序列,因为(k 有可能 > ...

  6. codeforces 450B B. Jzzhu and Sequences(矩阵快速幂)

    题目链接: B. Jzzhu and Sequences time limit per test 1 second memory limit per test 256 megabytes input ...

  7. codeforces 691E Xor-sequences 矩阵快速幂

    思路:刚开始 n个元素,a[i][j]代表以i开头,j结尾的二元组符合条件的有多少 这是等于长度为2的数量 长度为3的数量为a*a,所以长度为n的数量是a^(k-1) 然后就是矩阵快速幂,然而我并不能 ...

  8. CodeForces 450B Jzzhu and Sequences(矩阵快速幂)题解

    思路: 之前那篇完全没想清楚,给删了,下午一上班突然想明白了. 讲一下这道题的大概思路,应该就明白矩阵快速幂是怎么回事了. 我们首先可以推导出 学过矩阵的都应该看得懂,我们把它简写成T*A(n-1)= ...

  9. Codeforces 691E Xor-sequences(矩阵快速幂)

    You are given n integers a1,  a2,  ...,  an. A sequence of integers x1,  x2,  ...,  xk is called a & ...

随机推荐

  1. Tomcat配置,Myeclipse破解和各种设置

    转自:http://www.cnblogs.com/tyjsjl/archive/2006/11/14/2156111.html 根据tomcat来配置eclipse和MyEclipse结合使用起来, ...

  2. 命令行下Android应用开发

    本文介绍怎样创建你的第一个Android应用程序.您将学到怎样创建一个Androidproject和执行可调试版本号的应用程序. 開始本文学习之前.确保你已经安装了开发环境.你须要: 1.下载Andr ...

  3. VC 无边框对话框的任务栏右键菜单

    MFC ,基于对话框的程序,属性为:Border : none. 程序运行后,在任务栏里面点右键,不会弹出类似下面的菜单: 在对话框的OnInitDialog里面添加如下语句即可: ModifySty ...

  4. Eclipse中的Web项目自己主动部署到Tomcat

    一.原因. 1.写java程序有一段时间了,但非常久没用eclipse了.所以使用eclipse编写的web项目部署到tomcat 的方式也不是非常清楚,以下记录一下将Eclipse 上的web项目自 ...

  5. Flume接收器组的指数退避上限

    指数退避 agent.sinkgroups.sg1.sinks=k1,k2,k3agent.sinkgroups.sg1.processor.type=failoveragent.sinkgroups ...

  6. jws webservice code

    1.服务器端建立 1.1.创建接口 [java] view plaincopy @WebService  public interface IWebService {      int add(int ...

  7. 如何去除Office Excel的密码保护?

    企图更改Excel文件内容,然而却弹出如下提示: 根据提示,我尝试解除保护表,却要求输入密码: 这就尴尬了=_=密码不是我设定的 问了度娘,找到了解决方案 将Excel文件扩展名更改为rar, 使用压 ...

  8. 使用delphi 开发多层应用(十六)使用XMLRPC 实现basic4android 远程调用RTC服务(讲述了RTC的特点,其底层通讯协议是自己封装SOCK 库,与kbmmw 的适合场合不完全一样)

        RealThinClient (以下简称RTC) 也是一款delphi 多层开发的框架,由于其底层通讯协议是自己封装SOCK 库,抛弃了 大家诟病的indy,因此表现的非常稳定,效率也非常高, ...

  9. RedisCluster集群搭建

    搭建集群方案 安装部署任何一个应用其实都很简单,只要安装步骤一步一步来就行了.下面说一下 Redis 集群搭建规划,由于集群至少需要6个节点(3主3从模式),所以,没有这么多机器给我玩,我本地也起不了 ...

  10. RegistryView

    https://docs.microsoft.com/en-us/dotnet/api/microsoft.win32.registryview?view=netframework-4.7 On th ...