Schmidl算法代码

算法原理

训练序列结构 T=[A A],其中A表示复伪随机序列PN,进行N/2点ifft变换得到的符号序列

\[M(d)=\frac{\left | P(d) \right |}{R^{2}(d)}^{2}
\]

\[P(d)=\sum_{m=0}^{L-1}r^{*}(d+m) r(d+m+L)
\]

\[R(d)=\sum_{m=0}^{L-1}\left | r(d+m+L) \right |^{2}
\]

\[L=N/2
\]

所求得的d对应的是训练序列(不包含循环前缀)的开始位置。

★Schmidl:Schmidl算法利用一个由两端时域上完全相同的序列的前导来进行定时同步,但是这种方法得到的同步效果并不好,其同步度量函数曲线存在一个平顶,这使得定时同步估计存在偏差和不确定性。

参考文献

Schmidl T M,COX D C.Robust frequency and timing synchronization for OFDM[J].IEEE Trans.Commun.,1997,45(12):1613-1612.

%********************schmidl algorithm*******************
%Example:
% If
% X = rand(2,3,4);
% then
% d = size(X) returns d = [2 3 4]
% [m1,m2,m3,m4] = size(X) returns m1 = 2, m2 = 3, m3 = 4, m4 = 1
% [m,n] = size(X) returns m = 2, n = 12
% m2 = size(X,2) returns m2 = 3
close all;
clear all;
clc;
%参数定义
N=256; %FFT/IFFT 变换的点数或者子载波个数(Nu=N)
Ng=N/8; %循环前缀的长度 (保护间隔的长度)
Ns=Ng+N; %包括循环前缀的符号长度 %************利用查表法生成复随机序列**********************
QAMTable=[7+7i,-7+7i,-7-7i,7-7i];
buf=QAMTable(randi([0,3],N/2,1)+1); %加1是为了下标可能是0不合法 %*************在奇数子载波的位置插入零*********************zj:是偶数吧?
x=zeros(N,1);
index = 1;
for n=1:2:N
x(n)=buf(index);
index=index+1;
end; %**************利用IFFT变换生成Schmidl训练符号***************
sch = ifft(x); %[A A]的形式 %*****************添加一个空符号以及一个后缀符号*************
src = QAMTable(randi([0,3],N,1)+1).';
sym = ifft(src);
sig =[zeros(N,1) sch sym]; %**********************添加循环前缀*************************
tx =[sig(N - Ng +1:N,:);sig]; %***********************经过信道***************************
recv = reshape(tx,1,size(tx,1)*size(tx,2)); %size的1表示行,2表示列,从%前向后数,超过了为1
%recv1 = awgn(recv,1,'measured');
%recv2 = awgn(recv,5,'measured');
%recv3 = awgn(recv,10,'measured');
%*****************计算符号定时*****************************
P=zeros(1,2*Ns);
R=zeros(1,2*Ns);
%P1=zeros(1,2*Ns);
%R1=zeros(1,2*Ns);
P2=zeros(1,2*Ns);
R2=zeros(1,2*Ns);
%P3=zeros(1,2*Ns);
%R3=zeros(1,2*Ns);
for d = Ns/2+1:1:2*Ns
for m=0:1:N/2-1
P(d-Ns/2) = P(d-Ns/2) + conj(recv(d+m))*recv(d+N/2+m);
R(d-Ns/2) = R(d-Ns/2) + power(abs(recv(d+N/2+m)),2);
%P1(d-Ns/2) = P1(d-Ns/2) + conj(recv1(d+m))*recv1(d+N/2+m);
%R1(d-Ns/2) = R1(d-Ns/2) + power(abs(recv1(d+N/2+m)),2);
%P2(d-Ns/2) = P2(d-Ns/2) + conj(recv2(d+m))*recv2(d+N/2+m);
%R2(d-Ns/2) = R2(d-Ns/2) + power(abs(recv2(d+N/2+m)),2);
% P3(d-Ns/2) = P3(d-Ns/2) + conj(recv3(d+m))*recv3(d+N/2+m);
% R3(d-Ns/2) = R3(d-Ns/2) + power(abs(recv3(d+N/2+m)),2);
end
end
M=power(abs(P),2)./power(abs(R),2);
%M1=power(abs(P1),2)./power(abs(R1),2);
%M2=power(abs(P2),2)./power(abs(R2),2);
%M3=power(abs(P3),2)./power(abs(R3),2); %**********************绘图******************************
figure('Color','w');
d=1:1:400;
figure(1);
plot(d,M(d));
grid on;
axis([0,400,0,1.1]);
title('schmidl algorithm');
xlabel('Time (sample)');
ylabel('Timing Metric');
%legend('no noise','SNR=1dB','SNR=5dB','SNR=10dB');
hold on;

OFDM同步算法之Schmidl算法的更多相关文章

  1. OFDM同步算法之Park算法

    park算法代码 训练序列结构 T=[\(C\) \(D\) \(C^{*}\) \(D^{*}\)],其中C表示由长度为N/4的复伪随机序列PN,ifft变换得到的符号序列 \(C(n) = D(N ...

  2. OFDM同步算法之Minn算法

    minn算法代码 算法原理 训练序列结构 T=[B B -B -B],其中B表示由长度为N/4的复伪随机序列PN,ifft变换得到的符号序列 (原文解释):B represent samples of ...

  3. FPGA与MATLAB数据交互高效率验证算法——仿真阶段

    之前博文是对基本设计技巧的总结和一些小设计随笔,内容有点杂,缺乏目的性.本来后续计划设计几个小项目,但导师的任务比较紧,所以为了提高效率,后续博客会涉及到很多算法方面的设计与验证的内容,主要关于OFD ...

  4. Zookeeper--0100--简介说明

    1.1-Zookeeper简介 什么是Zookeeper? Zookeeper是一个高效的分布式协调服务,它暴露了一些公共服务,比如命名/配置/管理/同步控制/群组服务等.我们可以使用ZK来实现比如达 ...

  5. MIMO OFDM 常用信号检测算法

    MIMO OFDM 系统检测算法 1. 前言 MIMO的空分复用技术可以使得系统在系统带宽和发射带宽不变的情况下容易地获得空间分集增益和信道的容量增益.OFDM技术采用多个正交的子载波并行传输数据,使 ...

  6. 非阻塞同步算法与CAS(Compare and Swap)无锁算法

    锁(lock)的代价 锁是用来做并发最简单的方式,当然其代价也是最高的.内核态的锁的时候需要操作系统进行一次上下文切换,加锁.释放锁会导致比较多的上下文切换和调度延时,等待锁的线程会被挂起直至锁释放. ...

  7. 【Java并发编程】9、非阻塞同步算法与CAS(Compare and Swap)无锁算法

    转自:http://www.cnblogs.com/Mainz/p/3546347.html?utm_source=tuicool&utm_medium=referral 锁(lock)的代价 ...

  8. 非阻塞同步算法实战(三)-LatestResultsProvider

    本人是本文的作者,首发于ifeve(非阻塞同步算法实战(三)-LatestResultsProvider) 前言 阅读本文前,需要读者对happens-before比较熟悉,了解非阻塞同步的一些基本概 ...

  9. 信号量和PV操作写出Bakery算法的同步程序

    面包店烹制面包及蛋糕,由n个销售员卖出.当有顾客进店购买面包或蛋糕时,应先在取号机上取号,然后等待叫号,若有销售员空闲时便叫下一号,试用信号量和PV操作写出Bakery算法的同步程序. 设计要求 1) ...

随机推荐

  1. IDEA下tomcat中web项目乱码,控制台乱码解决指南

    若是由于过滤器,request ,response等原因,不适用. 原文作者:http://www.kafeitu.me/tools/2013/03/26/intellij-deal-chinese- ...

  2. [luoguP2486] [SDOI2011]染色(树链剖分)

    传送门 就是个模板啦 记录每一个点的左端点颜色和右端点颜色和当前端点颜色段数. 合并时如果左孩子右端点和右孩子左端点不同就 ans-- 在重链上跳的时候别忘记统计一下 ——代码 #include &l ...

  3. C语言试题

    C语言试题 [说明]: 1.本试题中不考虑头文件引用问题(假定已经包含正确的头文件),C语言的标准函数都可用: 2.如果不特别说明,假定程序运行环境为:操作系统Windows 2000, VC6.0编 ...

  4. 史上超全面的Neo4j使用指南

    Create by yster@foxmail.com 2018-7-10 我的博客:https://blog.csdn.net/yueshutong123 W3Cschool文档:https://w ...

  5. 通过DaoCloud发布Ghost

    首先参考这篇文章: http://docs-static.daocloud.io/daocloud-services/volume-controller 但是按照这篇文章,最后的主题是没有办法应用上去 ...

  6. iOS中的枚举:enum, NS_ENUM, NS_OPTIONS的使用区别

    1.enum可以声明一般类型和位掩码(bitmasked)类型 例如: enum Test{// 一般枚举 TestA, TestB, TestC, }; enum{// 匿名枚举 TestA, Te ...

  7. 练习使用Trim()函数规范名字输入

    Java中的Trim()函数能够去除字符串的空白前缀和空白后缀,可用来规范用户输入的内容,详细这样用: String s="   Hello world  ".trim(); 然后 ...

  8. 安装ubuntu远程桌面xrdp可视化设置界面

    ubuntu 远程桌面的时候须要从系统-首选项-远程桌面 可是有的ubuntu远程桌面的应用须要自己安装.例如以下是安装命令: sudo apt-get install xrdp

  9. 汉澳Sinox2014X64server高级桌面服务器版操作系统公布

    汉澳Sinox2014X64server高级桌面服务器版操作系统公布   当你在现代城市夜空中看到一道闪电.屏幕中央闪过几个图形,转眼间变成美轮美奂的紫色空中天国,说明你来到了汉澳sinox2014世 ...

  10. 关于OpenFileDialog的使用(转)

    OpenFileDialog控件有以下基本属性 InitialDirectory 对话框的初始目录 Filter 要在对话框中显示的文件筛选器,例如,"文本文件(*.txt)|*.txt|所 ...