http://poj.org/problem?id=2976

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 13861   Accepted: 4855

Description

In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be

.

Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.

Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .

Input

The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains npositive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.

Output

For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.

Sample Input

3 1
5 0 2
5 1 6
4 2
1 2 7 9
5 6 7 9
0 0

Sample Output

83
100

Hint

To avoid ambiguities due to rounding errors, the judge tests have been constructed so that all answers are at least 0.001 away from a decision boundary (i.e., you can assume that the average is never 83.4997).

Source

 
 
题意:给出n个物品,每个物品有两个属性a和b,选择n-k个元素,询问sum{ai}/sum{bi}的最大值。
分数规划 二分答案ans , 判断 sum[a[i]]/sum[b[i]]与ans的关系
  即 判断 b[i]*ans-a[i]*100+b[i+1]*ans-a[i+1]*100+...+b[i+k]*ans-a[i+k]*100<0
 #include <algorithm>
#include <cstdio> inline void read(int &x)
{
x=; register char ch=getchar();
for(; ch>''||ch<''; ) ch=getchar();
for(; ch>=''&&ch<=''; ch=getchar()) x=x*+ch-'';
}
const double eps(1e-);
const int N();
double a[N],b[N];
int n,k; double l,r,mid,ans,tmp[N];
inline bool check(double x)
{
double sum=0.0;
for(int i=; i<=n; ++i)
tmp[i]=1.0*b[i]*x-100.0*a[i];
std::sort(tmp+,tmp+n+);
for(int i=; i<=n-k; ++i) sum+=tmp[i];
return sum<;
} int Presist()
{
for(; ; )
{
read(n),read(k); if(!n&&!k) break;
for(int i=; i<=n; ++i) scanf("%lf",&a[i]);
for(int i=; i<=n; ++i) scanf("%lf",&b[i]);
for(l=,r=100.0; r-l>eps; )
{
mid=(l+r)/2.0;
if(check(mid))
l=mid;
else r=mid;
}
printf("%.0lf\n",l);
}
return ;
} int Aptal=Presist();
int main(int argc,char**argv){;}

POJ——T 2976 Dropping tests的更多相关文章

  1. POJ:2976 Dropping tests(二分+最大化平均值)

    Description In a certain course, you take n tests. If you get ai out of bi questions correct on test ...

  2. POJ - 2976 Dropping tests && 0/1 分数规划

    POJ - 2976 Dropping tests 你有 \(n\) 次考试成绩, 定义考试平均成绩为 \[\frac{\sum_{i = 1}^{n} a_{i}}{\sum_{i = 1}^{n} ...

  3. 二分算法的应用——最大化平均值 POJ 2976 Dropping tests

    最大化平均值 有n个物品的重量和价值分别wi 和 vi.从中选出 k 个物品使得 单位重量 的价值最大. 限制条件: <= k <= n <= ^ <= w_i <= v ...

  4. POJ 2976 Dropping tests 【01分数规划+二分】

    题目链接:http://poj.org/problem?id=2976 Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  5. POJ 2976 Dropping tests(01分数规划入门)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11367   Accepted: 3962 D ...

  6. POJ 2976 Dropping tests 01分数规划 模板

    Dropping tests   Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6373   Accepted: 2198 ...

  7. POJ 2976 Dropping tests(01分数规划)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:17069   Accepted: 5925 De ...

  8. POJ 2976 Dropping tests (0/1分数规划)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4654   Accepted: 1587 De ...

  9. Poj 2976 Dropping tests(01分数规划 牛顿迭代)

    Dropping tests Time Limit: 1000MS Memory Limit: 65536K Description In a certain course, you take n t ...

随机推荐

  1. java自动包装与解包

    关于java的自动包装机制想必大家都用过吧,一般这些机制都用于在往容器中存储基本类型数据的时候,因为容器中不允许存在基本数据类型,所以就会调用自动包装机制,将基本数据类型转换为对象,将基本数据保存在对 ...

  2. call方法的使用bug--参数undefined

    call/apply是函数原型定义的方法(Function.prorotype),在使用时要注意第一个形参(args[0]),一定是指向函数所要挂载的上下文对象--context,若对象非必须,则要将 ...

  3. Farseer.net轻量级ORM开源框架 V1.2版本升级消息

    V1.1到V1.2的更新,重构了很多类及方法,其中主要做了性能优化(取消所有反射,使用表达式树+缓存).解耦了SQL生成层(没有实体.队列的依赖,所有数据均通过表达式树传递解析) 先上内部更新历史记录 ...

  4. C/C++ new/delete []、内存泄漏、动态数组

    一.概念 new/delete是用于动态分配和撤销内存的运算符.new/delete是c++里才有的,c中是用malloc和free,c++虽然也可以用,但是不建议用.当我们使用关键字new在堆上动态 ...

  5. QQ感叹号是什么鬼?原来是服务器波动,腾讯官方来辟谣了

    今天晚上很多网友在用QQ发送消息的时候发现,自己发送的消息一直是感叹号❗到底是怎么回事呢?是消息都发不出去了吗?马浩周通过手机测试后发现,其实消息是可以发出去的,而官方手机QQ出来已经通知了,是服务器 ...

  6. Ubuntu Linux14 64位下在Android studio下用gradle编译Andrid项目时发生libz.so.1共享库找不到的解决方法。

    ---恢复内容开始--- 我在Ubuntu14 64为下安装了AS,但在用Gradle编译项目时总是报找不到 libz.so.1的错误. error while loading shared libr ...

  7. leetcode_684. Redundant Connection

    https://leetcode.com/problems/redundant-connection/ 一个无向图,n个顶点有n条边,输出一条可以删除的边,删除后使得图成为一棵树.可以使用并查集解决. ...

  8. MIPS的寄存器、指令和寻址方式的分类

    MIPS的32个寄存器 助记符 编号 作用 zero 0 恒为0 at 1 (assembly temporary)保留给汇编器使用 v0,v1 2-3 (values)子程序返回,即函数调用时的返回 ...

  9. torch.nn.Embedding理解

    Pytorch官网的解释是:一个保存了固定字典和大小的简单查找表.这个模块常用来保存词嵌入和用下标检索它们.模块的输入是一个下标的列表,输出是对应的词嵌入. torch.nn.Embedding(nu ...

  10. SpringMVC+ajax返回JSON串

    一.引言 本文使用springMVC和ajax做的一个小小的demo,实现将JSON对象返回到页面,没有什么技术含量,纯粹是因为最近项目中引入了springMVC框架. 二.入门例子 ①. 建立工程, ...