http://poj.org/problem?id=2976

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 13861   Accepted: 4855

Description

In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be

.

Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.

Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .

Input

The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains npositive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.

Output

For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.

Sample Input

3 1
5 0 2
5 1 6
4 2
1 2 7 9
5 6 7 9
0 0

Sample Output

83
100

Hint

To avoid ambiguities due to rounding errors, the judge tests have been constructed so that all answers are at least 0.001 away from a decision boundary (i.e., you can assume that the average is never 83.4997).

Source

 
 
题意:给出n个物品,每个物品有两个属性a和b,选择n-k个元素,询问sum{ai}/sum{bi}的最大值。
分数规划 二分答案ans , 判断 sum[a[i]]/sum[b[i]]与ans的关系
  即 判断 b[i]*ans-a[i]*100+b[i+1]*ans-a[i+1]*100+...+b[i+k]*ans-a[i+k]*100<0
 #include <algorithm>
#include <cstdio> inline void read(int &x)
{
x=; register char ch=getchar();
for(; ch>''||ch<''; ) ch=getchar();
for(; ch>=''&&ch<=''; ch=getchar()) x=x*+ch-'';
}
const double eps(1e-);
const int N();
double a[N],b[N];
int n,k; double l,r,mid,ans,tmp[N];
inline bool check(double x)
{
double sum=0.0;
for(int i=; i<=n; ++i)
tmp[i]=1.0*b[i]*x-100.0*a[i];
std::sort(tmp+,tmp+n+);
for(int i=; i<=n-k; ++i) sum+=tmp[i];
return sum<;
} int Presist()
{
for(; ; )
{
read(n),read(k); if(!n&&!k) break;
for(int i=; i<=n; ++i) scanf("%lf",&a[i]);
for(int i=; i<=n; ++i) scanf("%lf",&b[i]);
for(l=,r=100.0; r-l>eps; )
{
mid=(l+r)/2.0;
if(check(mid))
l=mid;
else r=mid;
}
printf("%.0lf\n",l);
}
return ;
} int Aptal=Presist();
int main(int argc,char**argv){;}

POJ——T 2976 Dropping tests的更多相关文章

  1. POJ:2976 Dropping tests(二分+最大化平均值)

    Description In a certain course, you take n tests. If you get ai out of bi questions correct on test ...

  2. POJ - 2976 Dropping tests && 0/1 分数规划

    POJ - 2976 Dropping tests 你有 \(n\) 次考试成绩, 定义考试平均成绩为 \[\frac{\sum_{i = 1}^{n} a_{i}}{\sum_{i = 1}^{n} ...

  3. 二分算法的应用——最大化平均值 POJ 2976 Dropping tests

    最大化平均值 有n个物品的重量和价值分别wi 和 vi.从中选出 k 个物品使得 单位重量 的价值最大. 限制条件: <= k <= n <= ^ <= w_i <= v ...

  4. POJ 2976 Dropping tests 【01分数规划+二分】

    题目链接:http://poj.org/problem?id=2976 Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  5. POJ 2976 Dropping tests(01分数规划入门)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11367   Accepted: 3962 D ...

  6. POJ 2976 Dropping tests 01分数规划 模板

    Dropping tests   Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6373   Accepted: 2198 ...

  7. POJ 2976 Dropping tests(01分数规划)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:17069   Accepted: 5925 De ...

  8. POJ 2976 Dropping tests (0/1分数规划)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4654   Accepted: 1587 De ...

  9. Poj 2976 Dropping tests(01分数规划 牛顿迭代)

    Dropping tests Time Limit: 1000MS Memory Limit: 65536K Description In a certain course, you take n t ...

随机推荐

  1. Tomcat源码分析----eclipse中搭建源码环境

    前提:JDK,至少1.7,ant,要设置ANT_HOME环境变量,需要再classpath中增加ant的lib目录,在path变量中增加ant的bin目录 1.官网下载tomcat源码包:apache ...

  2. openmv第一次调试

    2018-09-19  20:14:51 import sensor, image, time import car import json import time from pyb import U ...

  3. idea下关联spark源码环境(转)

    0.环境: java 1.8 scala 2.11.8 maven 3.5.0 idea 2017 spark 2.2.0 1完成以下配置 java环境变量 scala环境变量 maven setti ...

  4. [小记]Android缓存问题

    今天晚上,产品经理打电话说我们的Android App除了问题,问题很简单就是一个缓存问题,由于这个程序是前同事写的,我也只能呵呵一笑,有些事你就得扛.还是回到正题吧,这个缓存问题,实在有点奇葩,所以 ...

  5. iOS:swift :可选类型

    import UIKit /*: 可选类型 * 可选类型表示变量可以有值, 也可以没有值 * C 和 Objective-C 中并没有可选类型这个概念 * Swift中只有可选类型才可以赋值为nil ...

  6. RequireJS 上手使用

    首先 点击此处 得到requirejs. 捣鼓了俩小时终于运行成功了,原因是因为require(['我是空格underscore',...],function(){...})的时候 变量多个空格(坑爹 ...

  7. Ryubook_1_switch_hub_部署执行

    一.环境: mininet.ovs.Ryu. 二.实验过程: 1.搭建拓扑: 执行sudo mn --topo single,3 --mac --switch ovsk --controller re ...

  8. MFC_简易文件管理器

    练习_简易文件管理器 Edit1编辑框绑定变量,初始化内容 m_EditCtrl = L"D:\"; 添加List控件,属性设置report,OnInitDialog()函数里添加 ...

  9. Seating Arrangement

    1997: Seating Arrangement Time Limit: 1 Sec     Memory Limit: 128 Mb     Submitted: 543     Solved:  ...

  10. 三、spring中高级装配(1)

    大概看了一下第三章的内容,我从项目中仔细寻找,始终没有发现哪里有这种配置,但是看完觉得spring还有这么牛B的功能啊,spring的厉害之处,这种设计程序的思想,很让我感慨... 一.环境与prof ...