[USACO10FEB]慢下来Slowing down
线段树 树的dfs序
来自 洛谷 P1982 的翻译
by GeneralLiu
来自 jzyz 的翻译 %mzx

线段树 dfs序
数据结构的应用
“数据结构 是先有需求 再有应用” by mzx
那么按照这个思路
先看看针对这道题 有什么需求
再考虑用什么数据结构去解决
以及怎么用该数据结构
这是一个树上的题
某个人进了寝室
只会影响到他子树的答案
因为只有他的 子树 回寝室时
要经过他 得slowing down对吧
这时 要对他的 子树的答案全部 区间+1
这是 对dfs序的需求
需要 dfs序 将树转换成区间
区间修改 单点查询 又是对 线段树 的需求
需要 线段树 的高效维护
如有dalao有更高效的方法请博客留言
我目前只学了线段树这个家伙啦
具体应用
dfs序
void dfs(int u){
dfn[u]=++cnt;//dfn[]为树转换为dfs序中的下标
size[u]=1;//u为根的子树大小
int v;
for(int i=head[u];i;i=next[i]){
v=to[i];
if(dfn[v])continue;
dfs(v);
size[u]+=size[v];
}
}
这样一棵子树 就对应了 dfn[]数组 的一段区间
以点k为根的 区间
左端点 是 dfn[k],
右端点 是 dfn[k] + size [k] - 1 。
线段树
main() 函数中的代码
for(int k,i=1;i<=n;i++){
k=read();
//单点查询
printf("%d\n",query(dfn[k],root));
//区间修改
update(dfn[k],dfn[k]+size[k]-1,root);
}
其他函数
void pushdown(int rt){//懒标记下传
if(!add[rt])return;
add[rt<<1]+=add[rt];
add[rt<<1|1]+=add[rt];
add[rt]=0;
}
void update(int x,int y,int l,int r,int rt){
if(x<=l&&r<=y){
add[rt]++;//区间修改时 针对本题 懒标记+1
return;
}
pushdown(rt);
int mid=(l+r)>>1;
if(x<=mid)update(x,y,lson);
if(mid<y)update(x,y,rson);
}
int query(int k,int l,int r,int rt){
//单点查询 所以线段树只用 懒标记add[]数组 即可
if(l==r)return add[rt];
pushdown(rt);
int mid=(l+r)>>1;
if(k<=mid)return query(k,lson);
return query(k,rson);
}
这样就 滋瓷 了本题的修改与查询操作
完
总代码
#include<bits/stdc++.h>
using namespace std;
#define N 100015
#define root 1,n,1
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
int n,cnt;
int head[N],next[N<<1],to[N<<1];
int dfn[N],size[N];
int add[N<<2];
int read(){
int ans=0;
char ch=getchar();
for(;!isdigit(ch);ch=getchar());
for(;isdigit(ch);ch=getchar())
ans=(ans<<3)+(ans<<1)+ch-'0';
return ans;
}
void ad(int from,int too){
next[++cnt]=head[from];
to[cnt]=too;
head[from]=cnt;
}
void dfs(int u){
dfn[u]=++cnt;//dfn[]为树转换为dfs序中的下标
size[u]=1;//u为根的子树大小
int v;
for(int i=head[u];i;i=next[i]){
v=to[i];
if(dfn[v])continue;
dfs(v);
size[u]+=size[v];
}
}
void pushdown(int rt){//懒标记下传
if(!add[rt])return;
add[rt<<1]+=add[rt];
add[rt<<1|1]+=add[rt];
add[rt]=0;
}
void update(int x,int y,int l,int r,int rt){
if(x<=l&&r<=y){
add[rt]++;//区间修改时 针对本题 懒标记+1
return;
}
pushdown(rt);
int mid=(l+r)>>1;
if(x<=mid)update(x,y,lson);
if(mid<y)update(x,y,rson);
}
int query(int k,int l,int r,int rt){
//单点查询 所以线段树只用 懒标记add[]数组 即可
if(l==r)return add[rt];
pushdown(rt);
int mid=(l+r)>>1;
if(k<=mid)return query(k,lson);
return query(k,rson);
}
int main(){
n=read();
for(int x,y,i=1;i<n;i++){
x=read(),y=read();
ad(x,y);
ad(y,x);
}
cnt=0;
dfs(1);
for(int k,i=1;i<=n;i++){
k=read(); //单点查询
printf("%d\n",query(dfn[k],root)); //区间修改
update(dfn[k],dfn[k]+size[k]-1,root);
}
return 0;
}
[USACO10FEB]慢下来Slowing down的更多相关文章
- USACO10FEB]慢下来Slowing down dfs序 线段树
[USACO10FEB]慢下来Slowing down 题面 洛谷P2982 本来想写树剖来着 暴力数据结构直接模拟,每头牛回到自己的农场后,其子树下的所有牛回到农舍时,必定会经过此牛舍,即:每头牛回 ...
- 洛谷P2982 [USACO10FEB]慢下来Slowing down [2017年四月计划 树状数组01]
P2982 [USACO10FEB]慢下来Slowing down 题目描述 Every day each of Farmer John's N (1 <= N <= 100,000) c ...
- 洛谷P2982 [USACO10FEB]慢下来Slowing down(线段树 DFS序 区间增减 单点查询)
To 洛谷.2982 慢下来Slowing down 题目描述 Every day each of Farmer John's N (1 <= N <= 100,000) cows con ...
- [luogu2982][USACO10FEB]慢下来Slowing down(树状数组+dfs序)
题目描述 Every day each of Farmer John's N (1 <= N <= 100,000) cows conveniently numbered 1..N mov ...
- 洛谷P2982 [USACO10FEB]慢下来Slowing down
题目 题目大意 :给出一棵树,节点有点权,求每个节点的祖先中点权小于该节点的结点的个数 . 思路如下 : 从根节点开始,对树进行深度优先遍历. 当进行到节点 i 时,有: $\text{i}$ 的祖 ...
- luoguP2982 [USACO10FEB]慢下来Slowing down
https://www.luogu.org/problemnew/show/P2982 这题你写个树剖当然可以做,但是我们还有一种更简单的方法,使用 dfs 序 + 树状数组即可 考虑一只牛到了自己的 ...
- 线段树+Dfs序【p2982】[USACO10FEB]慢下来Slowing down
Description 每天Farmer John的N头奶牛(1 <= N <= 100000,编号1-N)从粮仓走向他的自己的牧场.牧场构成了一棵树,粮仓在1号牧场.恰好有N-1条道路直 ...
- 洛谷 P2982 [USACO10FEB]慢下来Slowing down
题目描述 Every day each of Farmer John's N (1 <= N <= 100,000) cows conveniently numbered 1..N mov ...
- [luoguP2982][USACO10FEB]慢下来Slowing down(dfs序 + 线段树)
传送门 这个题显然可以用树链剖分做. 然而线段树也能做. 每个点都对它的子树有贡献,所以先求一边 dfs序,然后直接在 dfs序 中搞 线段树 就行. ——代码 #include <cstdio ...
随机推荐
- TPS763xxDBV线性稳压器
DC DC converter 是直流变换器,因为直流不能通过变压器改变电压,要将直流电压通过振荡变成交流电压,再通过变压器或斩波器将电压升高或降低,再经滤波变成所需的电压.而voltage regu ...
- Unity3d的Sprite Packer用法介绍
我们用来做sprite 的图片,通常会留有很多空白的地方,我们在画完了sprite之后,这些地方很可能就没有什么作用了.如果想避免这些资源上的浪费,我们可以把各个sprite做成图集,把图片上的空间尽 ...
- leetcode315 Count of Smaller Numbers After Self
思路: bit + 离散化. 实现: #include <bits/stdc++.h> using namespace std; class Solution { public: int ...
- Android Gradle与Gradle插件的对应关系
查看链接 https://blog.csdn.net/dazhong2012/article/details/80585834
- HYSBZ 1503 郁闷的出纳员 (Splay树)
题意: 作为一名出纳员,我的任务之一便是统计每位员工的工资.但是我们的老板反复无常,经常调整员工的工资.如果他心情好,就可能把每位员工的工资加上一个相同的量.反之,如果心情不好,就可能把他们的工资扣除 ...
- IOS OS X 中集中消息的传递机制
1 KVO (key-value Observing) 是提供对象属性被改变是的通知机制.KVO的实现实在Foundation中,很多基于 Foundation 的框架都依赖与它.如果只对某一个对象的 ...
- 将Chrome调试器里的JavaScript变量保存成本地JSON文件
我写了一个系列的文章,主要用来搜集一些供程序员使用的小工具,小技巧,帮助大家提高工作效率. 推荐一个功能强大的文件搜索工具SearchMyFiles 介绍一个好用的免费流程图和UML绘制软件-Diag ...
- 使用docker搭建gitlab 服务器
本次使用的docker版本为 1.首先需要安装docker. 2.启动docker后,service docker start 3.拉取镜像 docker pull gitlab/gitlab- ...
- JavaSE-02 变量 数据类型和运算符
学习要点 掌握变量的概念 掌握常用数据类型 掌握赋值运算符.算术运算符 掌握boolean数据类型和关系运算符 掌握变量的概念 面向过程程序的定义 程序的定义:程序=数据+算法+文档 程序要操作的数据 ...
- 《3+1团队》【Alpha】Scrum meeting 1
项目 内容 这个作业属于哪个课程 任课教师博客主页链接 这个作业的要求在哪里 作业链接地址 团队名称 3+1团队 团队博客地址 https://home.cnblogs.com/u/3-1group ...