线段树  树的dfs序

来自   洛谷 P1982   的翻译

by  GeneralLiu

来自 jzyz 的翻译 %mzx

线段树  dfs序

数据结构的应用

“数据结构 是先有需求 再有应用” by mzx

那么按照这个思路

先看看针对这道题 有什么需求

再考虑用什么数据结构去解决

以及怎么用该数据结构

这是一个树上的题

某个人进了寝室

只会影响到他子树的答案

因为只有他的 子树 回寝室时

要经过他 得slowing down对吧

这时 要对他的 子树的答案全部 区间+1

这是 对dfs序的需求

需要 dfs序 将树转换成区间

区间修改 单点查询 又是对 线段树 的需求

需要 线段树 的高效维护

如有dalao有更高效的方法请博客留言

我目前只学了线段树这个家伙啦

具体应用

dfs序

void dfs(int u){
dfn[u]=++cnt;//dfn[]为树转换为dfs序中的下标
size[u]=1;//u为根的子树大小
int v;
for(int i=head[u];i;i=next[i]){
v=to[i];
if(dfn[v])continue;
dfs(v);
size[u]+=size[v];
}
}

这样一棵子树 就对应了 dfn[]数组 的一段区间

 以点k为根的 区间

  左端点 是 dfn[k],

  右端点 是 dfn[k] + size [k] - 1 。

线段树

main() 函数中的代码

for(int k,i=1;i<=n;i++){
k=read(); //单点查询
printf("%d\n",query(dfn[k],root)); //区间修改
update(dfn[k],dfn[k]+size[k]-1,root);
} 其他函数 void pushdown(int rt){//懒标记下传
if(!add[rt])return;
add[rt<<1]+=add[rt];
add[rt<<1|1]+=add[rt];
add[rt]=0;
}
void update(int x,int y,int l,int r,int rt){
if(x<=l&&r<=y){
add[rt]++;//区间修改时 针对本题 懒标记+1
return;
}
pushdown(rt);
int mid=(l+r)>>1;
if(x<=mid)update(x,y,lson);
if(mid<y)update(x,y,rson);
}
int query(int k,int l,int r,int rt){
//单点查询 所以线段树只用 懒标记add[]数组 即可
if(l==r)return add[rt];
pushdown(rt);
int mid=(l+r)>>1;
if(k<=mid)return query(k,lson);
return query(k,rson);
}

这样就 滋瓷 了本题的修改与查询操作

总代码

#include<bits/stdc++.h>
using namespace std;
#define N 100015
#define root 1,n,1
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
int n,cnt;
int head[N],next[N<<1],to[N<<1];
int dfn[N],size[N];
int add[N<<2];
int read(){
int ans=0;
char ch=getchar();
for(;!isdigit(ch);ch=getchar());
for(;isdigit(ch);ch=getchar())
ans=(ans<<3)+(ans<<1)+ch-'0';
return ans;
}
void ad(int from,int too){
next[++cnt]=head[from];
to[cnt]=too;
head[from]=cnt;
}
void dfs(int u){
dfn[u]=++cnt;//dfn[]为树转换为dfs序中的下标
size[u]=1;//u为根的子树大小
int v;
for(int i=head[u];i;i=next[i]){
v=to[i];
if(dfn[v])continue;
dfs(v);
size[u]+=size[v];
}
}
void pushdown(int rt){//懒标记下传
if(!add[rt])return;
add[rt<<1]+=add[rt];
add[rt<<1|1]+=add[rt];
add[rt]=0;
}
void update(int x,int y,int l,int r,int rt){
if(x<=l&&r<=y){
add[rt]++;//区间修改时 针对本题 懒标记+1
return;
}
pushdown(rt);
int mid=(l+r)>>1;
if(x<=mid)update(x,y,lson);
if(mid<y)update(x,y,rson);
}
int query(int k,int l,int r,int rt){
//单点查询 所以线段树只用 懒标记add[]数组 即可
if(l==r)return add[rt];
pushdown(rt);
int mid=(l+r)>>1;
if(k<=mid)return query(k,lson);
return query(k,rson);
}
int main(){
n=read();
for(int x,y,i=1;i<n;i++){
x=read(),y=read();
ad(x,y);
ad(y,x);
}
cnt=0;
dfs(1);
for(int k,i=1;i<=n;i++){
k=read(); //单点查询
printf("%d\n",query(dfn[k],root)); //区间修改
update(dfn[k],dfn[k]+size[k]-1,root);
}
return 0;
}

  

[USACO10FEB]慢下来Slowing down的更多相关文章

  1. USACO10FEB]慢下来Slowing down dfs序 线段树

    [USACO10FEB]慢下来Slowing down 题面 洛谷P2982 本来想写树剖来着 暴力数据结构直接模拟,每头牛回到自己的农场后,其子树下的所有牛回到农舍时,必定会经过此牛舍,即:每头牛回 ...

  2. 洛谷P2982 [USACO10FEB]慢下来Slowing down [2017年四月计划 树状数组01]

    P2982 [USACO10FEB]慢下来Slowing down 题目描述 Every day each of Farmer John's N (1 <= N <= 100,000) c ...

  3. 洛谷P2982 [USACO10FEB]慢下来Slowing down(线段树 DFS序 区间增减 单点查询)

    To 洛谷.2982 慢下来Slowing down 题目描述 Every day each of Farmer John's N (1 <= N <= 100,000) cows con ...

  4. [luogu2982][USACO10FEB]慢下来Slowing down(树状数组+dfs序)

    题目描述 Every day each of Farmer John's N (1 <= N <= 100,000) cows conveniently numbered 1..N mov ...

  5. 洛谷P2982 [USACO10FEB]慢下来Slowing down

    题目 题目大意 :给出一棵树,节点有点权,求每个节点的祖先中点权小于该节点的结点的个数 . 思路如下 : 从根节点开始,对树进行深度优先遍历. 当进行到节点 i 时,有: $\text{i}$ ​的祖 ...

  6. luoguP2982 [USACO10FEB]慢下来Slowing down

    https://www.luogu.org/problemnew/show/P2982 这题你写个树剖当然可以做,但是我们还有一种更简单的方法,使用 dfs 序 + 树状数组即可 考虑一只牛到了自己的 ...

  7. 线段树+Dfs序【p2982】[USACO10FEB]慢下来Slowing down

    Description 每天Farmer John的N头奶牛(1 <= N <= 100000,编号1-N)从粮仓走向他的自己的牧场.牧场构成了一棵树,粮仓在1号牧场.恰好有N-1条道路直 ...

  8. 洛谷 P2982 [USACO10FEB]慢下来Slowing down

    题目描述 Every day each of Farmer John's N (1 <= N <= 100,000) cows conveniently numbered 1..N mov ...

  9. [luoguP2982][USACO10FEB]慢下来Slowing down(dfs序 + 线段树)

    传送门 这个题显然可以用树链剖分做. 然而线段树也能做. 每个点都对它的子树有贡献,所以先求一边 dfs序,然后直接在 dfs序 中搞 线段树 就行. ——代码 #include <cstdio ...

随机推荐

  1. TPS763xxDBV线性稳压器

    DC DC converter 是直流变换器,因为直流不能通过变压器改变电压,要将直流电压通过振荡变成交流电压,再通过变压器或斩波器将电压升高或降低,再经滤波变成所需的电压.而voltage regu ...

  2. Unity3d的Sprite Packer用法介绍

    我们用来做sprite 的图片,通常会留有很多空白的地方,我们在画完了sprite之后,这些地方很可能就没有什么作用了.如果想避免这些资源上的浪费,我们可以把各个sprite做成图集,把图片上的空间尽 ...

  3. leetcode315 Count of Smaller Numbers After Self

    思路: bit + 离散化. 实现: #include <bits/stdc++.h> using namespace std; class Solution { public: int ...

  4. Android Gradle与Gradle插件的对应关系

    查看链接 https://blog.csdn.net/dazhong2012/article/details/80585834

  5. HYSBZ 1503 郁闷的出纳员 (Splay树)

    题意: 作为一名出纳员,我的任务之一便是统计每位员工的工资.但是我们的老板反复无常,经常调整员工的工资.如果他心情好,就可能把每位员工的工资加上一个相同的量.反之,如果心情不好,就可能把他们的工资扣除 ...

  6. IOS OS X 中集中消息的传递机制

    1 KVO (key-value Observing) 是提供对象属性被改变是的通知机制.KVO的实现实在Foundation中,很多基于 Foundation 的框架都依赖与它.如果只对某一个对象的 ...

  7. 将Chrome调试器里的JavaScript变量保存成本地JSON文件

    我写了一个系列的文章,主要用来搜集一些供程序员使用的小工具,小技巧,帮助大家提高工作效率. 推荐一个功能强大的文件搜索工具SearchMyFiles 介绍一个好用的免费流程图和UML绘制软件-Diag ...

  8. 使用docker搭建gitlab 服务器

    本次使用的docker版本为 1.首先需要安装docker. 2.启动docker后,service docker start   3.拉取镜像  docker pull gitlab/gitlab- ...

  9. JavaSE-02 变量 数据类型和运算符

    学习要点 掌握变量的概念 掌握常用数据类型 掌握赋值运算符.算术运算符 掌握boolean数据类型和关系运算符 掌握变量的概念 面向过程程序的定义 程序的定义:程序=数据+算法+文档 程序要操作的数据 ...

  10. 《3+1团队》【Alpha】Scrum meeting 1

    项目 内容 这个作业属于哪个课程 任课教师博客主页链接 这个作业的要求在哪里 作业链接地址 团队名称 3+1团队 团队博客地址 https://home.cnblogs.com/u/3-1group ...