今天是周末,之前给自己定了一个小目标:每周都要写一篇博客,不管是关于什么内容的都行,关键在于总结和思考,今天我选的主题是梯度提升树的一些方法,主要从这些方法的原理以及实现过程入手讲解这个问题。

本文按照这些方法出现的先后顺序叙述。

GBDT

梯度提升树实在提升树的基础上发展而来的一种使用范围更广的方法,当处理回归问题时,提升树可以看作是梯度提升树的特例(分类问题时是不是特例?)。 因为提升树在构建树每一步的过程中都是去拟合上一步获得模型在训练集上的残差。后面我们将会介绍,这个残存正好是损失函数的梯度,对应于GBDT每一步要拟合的对象。

主要思想

在目标函数所在的函数空间中做梯度下降,即把待求的函数模型当作参数,每一步要拟合目标函数关于上一步获得的模型的梯度,从而使得参数朝着最小化目标函数的方向更新。

一些特性

  1. 每次迭代获得的决策树模型都要乘以一个缩减系数,从而降低每棵树的作用,提升可学习空间。
  2. 每次迭代拟合的是一阶梯度。

XGBoost

XGBoost 是GBDT的一个变种,最大的区别是xgboost通过对目标函数做二阶泰勒展开,从而求出下一步要拟合的树的叶子节点权重(需要先确定树的结构),从而根据损失函数求出每一次分裂节点的损失减小的大小,从而根据分裂损失选择合适的属性进行分裂。

这个利用二阶展开的到的损失函数公式与分裂节点的过程是息息相关的。先遍历所有节点的所有属性进行分裂,假设选择了这个a属性的一个取值作为分裂节点,根据泰勒展开求得的公式可计算该树结构各个叶子节点的权重,从而计算损失减小的程度,从而综合各个属性选择使得损失减小最大的那个特征作为当前节点的分裂属性。依次类推,直到满足终止条件。

一些特性

  1. 除了类似于GBDT的缩减系数外,xgboost对每棵树的叶子节点个数和权重都做了惩罚,避免过拟合
  2. 类似于随机森林,XGBoost在构建树的过程中,对每棵树随机选择一些属性作为分裂属性。
  3. 分裂算法有两种,一种是精确的分裂,一种是近似分裂算法,精确分裂算法就是把每个属性的每个取值都当作一次阈值进行遍历,采用的决策树是CART。近似分裂算法是对每个属性的所有取值进行分桶,按照各个桶之间的值作为划分阈值,xgboost提出了一个特殊的分桶策略,一般的分桶策略是每个样本的权重都是相同 的,但是xgboost使每个样本的权重为损失函数在该样本点的二阶导(泰勒展开不应该是损失函数关于模型的展开吗?为什么会有在该样本点的二阶导这种说法? 因为模型是对所有样本点都通用的,把该样本输入到二阶导公式中就可以得到了)。

  4. xgboost添加了对稀疏数据的支持,在计算分裂收益的时候只利用没有missing值的那些样本,但是在推理的时候,也就是在确定了树的结构,需要将样本映射到叶子节点的时候,需要对含有缺失值的样本进行划分,xgboost分别假设该样本属于左子树和右子树,比较两者分裂增益,选择增益较大的那一边作为该样本的分裂方向。

  5. xgboost在实现上支持并行化,这里的并行化并不是类似于rf那样树与树之间的并行化,xgboost同boosting方法一样,在树的粒度上是串行的,但是在构建树的过程中,也就是在分裂节点的时候支持并行化,比如同时计算多个属性的多个取值作为分裂特征及其值,然后选择收益最大的特征及其取值对节点分裂。

  6. xgboost 在实现时,需要将所有数据导入内存,做一次pre-sort(exact algorithm),这样在选择分裂节点时比较迅速。

缺点

  1. level-wise 建树方式对当前层的所有叶子节点一视同仁,有些叶子节点分裂收益非常小,对结果没影响,但还是要分裂,加重了计算代价。
  2. 预排序方法空间消耗比较大,不仅要保存特征值,也要保存特征的排序索引,同时时间消耗也大,在遍历每个分裂点时都要计算分裂增益(不过这个缺点可以被近似算法所克服)

lightGBM

https://github.com/Microsoft/LightGBM/wiki/Features
关于lightGBM的论文目前并没有放出来,只是从网上一些信息得出以下的一些与xgboost不同的地方:

    1. xgboost采用的是level-wise的分裂策略,而lightGBM采用了leaf-wise的策略,区别是xgboost对每一层所有节点做无差别分裂,可能有些节点的增益非常小,对结果影响不大,但是xgboost也进行了分裂,带来了务必要的开销。 leaft-wise的做法是在当前所有叶子节点中选择分裂收益最大的节点进行分裂,如此递归进行,很明显leaf-wise这种做法容易过拟合,因为容易陷入比较高的深度中,因此需要对最大深度做限制,从而避免过拟合。

    2. lightgbm使用了基于histogram的决策树算法,这一点不同与xgboost中的 exact 算法,histogram算法在内存和计算代价上都有不小优势。
      -. 内存上优势:很明显,直方图算法的内存消耗为(#data* #features * 1Bytes)(因为对特征分桶后只需保存特征离散化之后的值),而xgboost的exact算法内存消耗为:(2 * #data * #features* 4Bytes),因为xgboost既要保存原始feature的值,也要保存这个值的顺序索引,这些值需要32位的浮点数来保存。
      -. 计算上的优势,预排序算法在选择好分裂特征计算分裂收益时需要遍历所有样本的特征值,时间为(#data),而直方图算法只需要遍历桶就行了,时间为(#bin)

    3. 直方图做差加速
      -. 一个子节点的直方图可以通过父节点的直方图减去兄弟节点的直方图得到,从而加速计算。

    4. lightgbm支持直接输入categorical 的feature
      -. 在对离散特征分裂时,每个取值都当作一个桶,分裂时的增益算的是”是否属于某个category“的gain。类似于one-hot编码。

    5. 但实际上xgboost的近似直方图算法也类似于lightgbm这里的直方图算法,为什么xgboost的近似算法比lightgbm还是慢很多呢?
      -. xgboost在每一层都动态构建直方图, 因为xgboost的直方图算法不是针对某个特定的feature,而是所有feature共享一个直方图(每个样本的权重是二阶导),所以每一层都要重新构建直方图,而lightgbm中对每个特征都有一个直方图,所以构建一次直方图就够了。
      -. lightgbm做了cache优化?

    6. lightgbm哪些方面做了并行?
      -. feature parallel
      一般的feature parallel就是对数据做垂直分割(partiion data vertically,就是对属性分割),然后将分割后的数据分散到各个workder上,各个workers计算其拥有的数据的best splits point, 之后再汇总得到全局最优分割点。但是lightgbm说这种方法通讯开销比较大,lightgbm的做法是每个worker都拥有所有数据,再分割?(没懂,既然每个worker都有所有数据了,再汇总有什么意义?这个并行体现在哪里??)
      -. data parallel
      传统的data parallel是将对数据集进行划分,也叫 平行分割(partion data horizontally), 分散到各个workers上之后,workers对得到的数据做直方图,汇总各个workers的直方图得到全局的直方图。 lightgbm也claim这个操作的通讯开销较大,lightgbm的做法是使用”Reduce Scatter“机制,不汇总所有直方图,只汇总不同worker的不同feature的直方图(原理?),在这个汇总的直方图上做split,最后同步。

梯度提升决策树(GBDT)与XGBoost、LightGBM的更多相关文章

  1. 机器学习之梯度提升决策树GBDT

    集成学习总结 简单易学的机器学习算法——梯度提升决策树GBDT GBDT(Gradient Boosting Decision Tree) Boosted Tree:一篇很有见识的文章 https:/ ...

  2. [机器学习]梯度提升决策树--GBDT

    概述 GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由 ...

  3. 梯度提升决策树(GBDT)

    1.提升树 以决策树为基函数的提升方法称为提升树.决策树可以分为分类树和回归树.提升树模型可以表示为决策树的加法模型. 针对不同的问题的提升术算法的主要区别就是损失函数的不同,对于回归问题我们选用平方 ...

  4. 笔记︱决策树族——梯度提升树(GBDT)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 本笔记来源于CDA DSC,L2-R语言课程所 ...

  5. GBDT:梯度提升决策树

    http://www.jianshu.com/p/005a4e6ac775 综述   GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Ad ...

  6. chapter02 三种决策树模型:单一决策树、随机森林、GBDT(梯度提升决策树) 预测泰坦尼克号乘客生还情况

    单一标准的决策树:会根每维特征对预测结果的影响程度进行排序,进而决定不同特征从上至下构建分类节点的顺序.Random Forest Classifier:使用相同的训练样本同时搭建多个独立的分类模型, ...

  7. Spark2.0机器学习系列之6:GBDT(梯度提升决策树)、GBDT与随机森林差异、参数调试及Scikit代码分析

    概念梳理 GBDT的别称 GBDT(Gradient Boost Decision Tree),梯度提升决策树.     GBDT这个算法还有一些其他的名字,比如说MART(Multiple Addi ...

  8. 梯度提升树(GBDT)原理小结(转载)

    在集成学习值Adaboost算法原理和代码小结(转载)中,我们对Boosting家族的Adaboost算法做了总结,本文就对Boosting家族中另一个重要的算法梯度提升树(Gradient Boos ...

  9. 【深度森林第三弹】周志华等提出梯度提升决策树再胜DNN

    [深度森林第三弹]周志华等提出梯度提升决策树再胜DNN   技术小能手 2018-06-04 14:39:46 浏览848 分布式 性能 神经网络   还记得周志华教授等人的“深度森林”论文吗?今天, ...

  10. scikit-learn 梯度提升树(GBDT)调参小结

    在梯度提升树(GBDT)原理小结中,我们对GBDT的原理做了总结,本文我们就从scikit-learn里GBDT的类库使用方法作一个总结,主要会关注调参中的一些要点. 1. scikit-learn ...

随机推荐

  1. zoj 3471(状态压缩DP,类似于点集配对)

    Most Powerful Time Limit: 2 Seconds      Memory Limit: 65536 KB Recently, researchers on Mars have d ...

  2. 07_传智播客iOS视频教程_#import指令

    mac切换中英文输入法默认是Ctrl+空格键. 预处理指令的执行时机是在编译之前.在编译之前执行预处理指令. #import指令是包含文件,将指定的文件的内容在预编译的时候拷贝到写指令的地方. #im ...

  3. Java使用动态代理实现AOP

    参考资料: http://www.importnew.com/15420.htmlhttp://www.cnblogs.com/techyc/p/3455950.html Spring是借助了动态代理 ...

  4. 【WIP】Ruby JSON

    创建: 2018/03/22 以后有空补上 注: JSON.generate 参数只能是Obejct或者Array, 不可以是Hash https://docs.ruby-lang.org/ja/la ...

  5. ZOJ5593:Let's Chat(双指针)

    传送门 题意 给出x个a区间和y个b区间,询问a和b交区间的子区间长度为m的个数 分析 类似于双指针,具体见代码 trick 代码 #include <bits/stdc++.h> usi ...

  6. bzoj 3122: [Sdoi2013]随机数生成器【BSGS】

    题目要求的是: \[ ...a(a(a(ax+b)+b)+b)+b...=a^nx+a^{n-1}b+a^{n-2}b+...+b\equiv t(mod\ p) \] 后面这一大坨看着不舒服,所以考 ...

  7. 51nod 1222 最小公倍数计数【莫比乌斯反演】

    参考:https://www.cnblogs.com/SilverNebula/p/7045199.html 所是反演其实反演作用不大,又是一道做起来感觉诡异的题 转成前缀和相减的形式 \[ \sum ...

  8. [App Store Connect帮助]七、在 App Store 上发行(2.2)设定价格与销售范围:将您的 App 以预订形式发布

    在首次将您的 App 发布至 App Store 前,您可以选择以预订形式提供该 App.在您的 App 发布以供下载之前,顾客可以查看您的产品页并订购您的 App.您的 App 一旦发布,顾客将会收 ...

  9. sql server 查看版本

    SELECT SERVERPROPERTY('productversion'), SERVERPROPERTY ('productlevel'),SERVERPROPERTY ('edition') ...

  10. docker 端口被占用问题解决

    启动容器A, A的端口映射是 80:8080 外部的25000端口映射到服务内部的8080端口:有时候将容器关闭,重新构建镜像及启动容器时会出现一些报错, 比如端口被占用的报错,但通过docker p ...