[Algorithm] 1. A+B Problem
Description
Write a function that add two numbers A and B.
Clarification
Are a and b both 32-bit integers?
- Yes.
Can I use bit operation?
- Sure you can.
Example
Given a=1 and b=2 return 3.
Challenge
Of course you can just return a + b to get accepted. But Can you challenge not do it like that?(You should not use + or any arithmetic operators.)
My Answer
Using a recursion method to solve this problem!
/**
* @param a: An integer
* @param b: An integer
* @return: The sum of a and b
*/
int aplusb(int a, int b) {
// Recursion process
if ( (a & b) == ){
return a ^ b;
} else {
return aplusb( (a^b), ((a&b)<<) );
}
}
Tips
It's not the only way to get the right answer. Can you try the other way like the loop structure?
[Algorithm] 1. A+B Problem的更多相关文章
- [Algorithm] Universal Value Tree Problem
A unival tree (which stands for "universal value") is a tree where all nodes under it have ...
- Design and Analysis of Algorithms_Fundamentals of the Analysis of Algorithm Efficiency
I collect and make up this pseudocode from the book: <<Introduction to the Design and Analysis ...
- Google Code Jam 2014 Round 1 A:Problem C. Proper Shuffle
Problem A permutation of size N is a sequence of N numbers, each between 0 and N-1, where each numbe ...
- 简单的量子算法(一):Hadamard 变换、Parity Problem
Hadamard Transform Hadamard 变换在量子逻辑门中提过,只不过那时是单量子的Hadamard门,负责把\(|1\rangle\)变成\(|-\rangle\),\(|0\ran ...
- 《Paxos Made Simple》翻译
1 Introduction 可能是因为之前的描述对大多数读者来说太过Greek了,Paxos作为一种实现容错的分布式系统的算法被认为是难以理解的.但事实上,它可能是最简单,最显而易见的分布式算法了. ...
- POMDP
本文转自:http://www.pomdp.org/ 一.Background on POMDPs We assume that the reader is familiar with the val ...
- Design and Analysis of Algorithms_Decrease-and-Conquer
I collect and make up this pseudocode from the book: <<Introduction to the Design and Analysis ...
- Design and Analysis of Algorithms_Divide-and-Conquer
I collect and make up this pseudocode from the book: <<Introduction to the Design and Analysis ...
- Examples of complexity pattern
O(1):constant - the operation doesn't depend on the size of its input, e.g. adding a node to the tai ...
随机推荐
- java笔记之IO1
File:文件和目录(文件夹)路径名的抽象表示形式 * 构造方法: * File(String pathname):根据一个路径得到File对象 * File(String parent, S ...
- 【黑金教程笔记之004】【建模篇】【Lab 03 消抖模块之一】—笔记
设计思路: (1) 一旦检测到按键资源按下(从高电平到低电平),“电平检测模块”就会拉高H2L_Sig电平,然后拉低. (2) “10ms延迟模块”检测到H2L_Sig高电平, ...
- 洛谷 P2764 最小路径覆盖问题【匈牙利算法】
经典二分图匹配问题.把每个点拆成两个,对于原图中的每一条边(i,j)连接(i,j+n),最小路径覆盖就是点数n-二分图最大匹配.方案直接顺着匹配dsf.. #include<iostream&g ...
- oracle ORA-01704: string literal too long问题分析
今天使用sql在oracle直接insert update一个表时,出现ORA-01704: string literal too long的错误,我们的sql是 update mall_config ...
- 史上最详细最全的Linux上安装Oracle的教程-centos7
一.安装Oracle前准备 1.创建运行oracle数据库的系统用户和用户组 [humf@localhost ~]$ su root #切换到root Password: [root@localhos ...
- 洛谷 P3368 【模板】树状数组 2(区间修改点查询)
题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数数加上x 2.求出某一个数的值 输入输出格式 输入格式: 第一行包含两个整数N.M,分别表示该数列数字的个数和操作的总个数. ...
- 【洛谷3343_BZOJ3925】[ZJOI2015]地震后的幻想乡(状压 DP_期望)
题目: 洛谷 3343 BZOJ 3925 分析: 谁给我说这是个期望概率神题的,明明没太大关系好吧 「提示」里那个结论哪天想起来再问 Jumpmelon 怎么证. 首先,由于开始修路前 \(e_i\ ...
- AsyncTask官方教程-推荐用AsyncTask少用Thread
Using AsyncTask AsyncTask allows you to perform asynchronous work on your user interface. It perform ...
- 转 【TTS】AIX平台数据库迁移到Linux--基于RMAN(真实环境)
[TTS]AIX平台数据库迁移到Linux--基于RMAN(真实环境) http://www.cnblogs.com/lhrbest/articles/5186933.html 各位技术爱好者,看完本 ...
- poj2886 Who Gets the Most Candies?
思路: 先打反素数表,即可确定因子最多的那个数.然后模拟踢人的过程确定对应的人名.模拟的过程使用线段树优化加速. 实现: #include <cstdio> #include <cs ...