HDU3430 (置换群循环节+中国剩余定理)
题意:给出n张牌,标号为1-n,然后给出两个序列,序列1表示序列1,2,3,4……,n洗一次牌后到达的,序列2表示目标序列,问初始序列按序列1的洗牌方式洗几次能到达序列2的情况,如果不能到达输出-1。
题解:在初始序列和序列1的变换中找出1能变到那些牌,这些牌构成一个集合,这些集合中的牌必然是能够相互到达的,然后在序列2中也找出这样一个集合,集合中这些元素的相互顺序是要一样的,这就是判断能否达到,然后这样可以列出几个线性同余方程组,用中国剩余定理求解即可(顺便献上中国剩余定理模板)。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<string>
#include<vector>
#include<map>
#include<set>
#include<queue>
using namespace std;
int n,a[],b[],vis[],c[],x[],y[];
long long exgcd(long long a,long long b,long long &x,long long &y)
{
if (b==)
{
x=;
y=;
return a;
}
long long gcd=exgcd(b,a%b,x,y);
long long t=x;
x=y;
y=t-a/b*x;
return gcd;
}
long long china_remain(long long m,int a[],int b[])
{
//for (int i=1;i<=m;i++)
// cout<<a[i]<<" "<<b[i]<<endl;
long long a1,a2,b1,b2,x,y,flag=;
a1=a[];
b1=b[];
int i;
for (i=;i<m;i++)
{
a2=a[i];
b2=b[i];
long long gcd=exgcd(a1,a2,x,y);
if ((b2-b1)%gcd)
{
flag=;
break;
}
long long t=a2/gcd;
x=(x*(b2-b1))/gcd;
x=(x%t+t)%t;
b1=a1*x+b1;
a1=(a1*a2)/gcd;
b1=(b1%a1+a1)%a1;
}
if (flag) return -;
return b1;
}
int main()
{
while (~scanf("%d",&n))
{
if (n==) break;
int i;
for (i=;i<=n;i++) scanf("%d",&a[i]);
for (i=;i<=n;i++) scanf("%d",&b[i]);
memset(vis,,sizeof(vis));
int cnt=;
bool can=true;
for (i=;i<=n;i++) if (!vis[i])
{
int flag=i;
int count=;
while (!vis[flag])
{
vis[flag]=;
c[count++]=flag;
flag=a[flag];
}
int pos=;
while (pos<count&&b[i]!=c[pos]) pos++;
if (pos==count)
{
can=false;
break;
}
x[cnt]=count;
y[cnt++]=pos;
//cout<<count<<" "<<pos<<endl;
flag=a[i];
while (flag!=i)
{
if (b[flag]!=c[(++pos)%count])
{
can=false;
break;
}
flag=a[flag];
}
if (!can) break;
}
if (!can) puts("-1");
else printf("%lld\n",china_remain(cnt,x,y));
}
}
HDU3430 (置换群循环节+中国剩余定理)的更多相关文章
- 【vijos】1164 曹冲养猪(中国剩余定理)
https://vijos.org/p/1164 好赞orz. 对于求一组线性同余方程 x=a[i](mod m[i]) 这里任意两个m[i]和m[j]都互质 那么可以用中国剩余定理来做. 对中国剩余 ...
- [bzoj2142]礼物(扩展lucas定理+中国剩余定理)
题意:n件礼物,送给m个人,每人的礼物数确定,求方案数. 解题关键:由于模数不是质数,所以由唯一分解定理, $\bmod = p_1^{{k_1}}p_2^{{k_2}}......p_s^{{k_ ...
- 2019牛客暑期多校训练营(第九场)The power of Fibonacci——循环节&&CRT
题意 求 $\displaystyle \sum_{i=1}^n F_i^m $,($1 \leq n\leq 10^9,1 \leq m\leq 10^3$),答案对 $10^9$ 取模. 分析 ...
- CRT中国剩余定理 & Lucas卢卡斯定理
数论_CRT(中国剩余定理)& Lucas (卢卡斯定理) 前言 又是一脸懵逼的一天. 正文 按照道理来说,我们应该先做一个介绍. 中国剩余定理 中国剩余定理,Chinese Remainde ...
- hdu_1573 X问题(不互素的中国剩余定理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1573 X问题 Time Limit: 1000/1000 MS (Java/Others) Me ...
- hdu_1370Biorhythms(互素的中国剩余定理)
Biorhythms Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- 礼物(中国剩余定理+拓展gcd求逆元+分治=拓展Lucus)
礼物 题意: 求\[C(n,m)\ \%\ p\] \(n,m,p\le 10^9\),且若\(p=\prod_{i=1}^{k}{p_i}^{c_i}\),则\(\forall i\in [1..k ...
- 【洛谷 P4777】 【模板】扩展中国剩余定理(EXCRT)
注意一下:: 题目是 \[x≡b_i\pmod {a_i}\] 我总是习惯性的把a和b交换位置,调了好久没调出来,\(qwq\). 本题解是按照 \[x≡a_i\pmod {b_i}\] 讲述的,请注 ...
- 牛客多校第九场 && ZOJ3774 The power of Fibonacci(二次剩余定理+斐波那契数列通项/循环节)题解
题意1.1: 求\(\sum_{i=1}^n Fib^m\mod 1e9+9\),\(n\in[1, 1e9], m\in[1, 1e4]\) 思路1.1 我们首先需要知道斐波那契数列的通项是:\(F ...
随机推荐
- QWidget标题栏双击事件
widget.h virtual bool event(QEvent *event); widget.cpp bool Widget::event(QEvent *event) { if (event ...
- react基础语法(四) state学习
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- Angular和SAP C4C的事件处理队列
Angular 我们在Angular框架的代码里能看到一个名为processQueue的函数: 这个函数是通过$scope.$apply启动的: 核心代码位于一个for循环里,循环体是一个存储异步处理 ...
- vc枚举本机端口信息API
常用的获取端口信息的函数: GetTcpTableGetExtendedTcpTableGetUdpTableGetExtendedUdpTable GetTcp6Table function Get ...
- 1.入手树莓派之linux环境搭建
最近刚刚买了一款 树莓派3代B型 raspberrypi 板载蓝牙和WIFI 英国版本,没玩过,觉得很好奇,生怕记性不好哈,把自己玩的过程记录一下,以备不时之需: 需要材料: 1) 树莓派: 2)sd ...
- 输入3个数a,b,c,按大小顺序输出。
题目:输入3个数a,b,c,按大小顺序输出. 思路: 根据最简单的, 经典的C语言算法, 两两相互交换得到他们的顺序 public class 第三十四题abc三个数大小排序 { public sta ...
- mysql恢复数据
1.崩溃恢复: 突然断电.宕机,导致mysql无法正常启动: (1) 关闭数据库. (2) Vim /etc/my.cnf 添加:innodb_force_recovery=1 默认为0. 1( ...
- redis:哨兵集群配置
最少配置1主2从3哨兵 一.引言 上一篇文章我们详细的讲解了Redis的主从集群模式,其实这个集群模式配置很简单,只需要在Slave的节点上进行配置,Master主节点的配置不需要做任何更改,但是有一 ...
- Python_编程题集_002_菱形
2.编写程序实现: n=5,输出: * *** ***** *** * n=6,输出: * *** ***** ***** *** * n为任意大于1的正整数. 解: #思路: # 第一步:判断行数, ...
- 记第一次面试的悲惨经历QAQ
面试岗位:测试开发 自我介绍 :根据介绍的内容,会问简历上涉及到的东西,主要是项目: 手写代码:给一个数组,求数组中所有数字拼接后能得到的最小数字.例:{3,32,312},输出312323. 关于计 ...