T1:loj 6029 市场

题目大意:

维护一个数据结构支持区间加 区间除法 区间求最小值 区间求和

思路:

用线段树维护区间加 区间求最小值 区间和

对于区间除法 注意到除数d很大而加法的w很小

尝试将区间除法变成区间减法

可以转化成减法的情况就是除法的时候减的数相同即区间内所有数相同或最小数和最大数相差为一且最大数为除数的倍数

即维护区间min max 加减法tag sum即可

 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
#define ll long long
#define inf 2147483611
#define MAXN 100100
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-;ch=getchar();}
while(isdigit(ch)) {x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,q,g[MAXN];
ll sum[MAXN<<],mn[MAXN<<],tag[MAXN<<],mx[MAXN<<];
void upd(int k) {sum[k]=sum[k<<]+sum[k<<|],mn[k]=min(mn[k<<],mn[k<<|]),mx[k]=max(mx[k<<],mx[k<<|]);}
void build(int k,int l,int r)
{
if(l==r) {sum[k]=mn[k]=mx[k]=g[l];return ;}
tag[k]=;
int mid=(l+r)>>;
build(k<<,l,mid);build(k<<|,mid+,r);
upd(k);
}
void pshd(int k,int l,int r)
{
int mid=(l+r)>>;
tag[k<<]+=tag[k],tag[k<<|]+=tag[k];
mn[k<<]+=tag[k],mn[k<<|]+=tag[k];
mx[k<<]+=tag[k],mx[k<<|]+=tag[k];
sum[k<<]+=(mid-l+)*tag[k],sum[k<<|]+=(r-mid)*tag[k];
tag[k]=;
}
void mdfp(int k,int l,int r,int a,int b,int x)
{
if(a==l&&r==b) {sum[k]+=(r-l+)*x,tag[k]+=x,mn[k]+=x,mx[k]+=x;return ;}
int mid=(l+r)>>;
if(tag[k]!=) pshd(k,l,r);
if(b<=mid) mdfp(k<<,l,mid,a,b,x);
else if(a>mid) mdfp(k<<|,mid+,r,a,b,x);
else {mdfp(k<<,l,mid,a,mid,x);mdfp(k<<|,mid+,r,mid+,b,x);}
upd(k);
}
void mdfd(int k,int l,int r,int a,int b,int x)
{
if(l==a&&r==b&&mn[k]-(ll)floor(1.0*mn[k]/x)==mx[k]-(ll)floor(1.0*mx[k]/x))
{
ll tmp=mn[k]-(ll)floor(1.0*mn[k]/x);
sum[k]-=tmp*(r-l+),mn[k]-=tmp,mx[k]-=tmp,tag[k]-=tmp;
return ;
}
int mid=(l+r)>>;
if(tag[k]!=) pshd(k,l,r);
if(b<=mid) mdfd(k<<,l,mid,a,b,x);
else if(a>mid) mdfd(k<<|,mid+,r,a,b,x);
else {mdfd(k<<,l,mid,a,mid,x);mdfd(k<<|,mid+,r,mid+,b,x);}
upd(k);
}
ll querys(int k,int l,int r,int a,int b)
{
if(a==l&&r==b) return sum[k];
int mid=(l+r)>>;
if(tag[k]!=) pshd(k,l,r);
if(b<=mid) return querys(k<<,l,mid,a,b);
else if(a>mid) return querys(k<<|,mid+,r,a,b);
else return querys(k<<,l,mid,a,mid)+querys(k<<|,mid+,r,mid+,b);
}
ll querym(int k,int l,int r,int a,int b)
{
if(a==l&&r==b) return mn[k];
int mid=(l+r)>>;
if(tag[k]!=) pshd(k,l,r);
if(b<=mid) return querym(k<<,l,mid,a,b);
else if(a>mid) return querym(k<<|,mid+,r,a,b);
else return min(querym(k<<,l,mid,a,mid),querym(k<<|,mid+,r,mid+,b));
}
int main()
{
n=read(),q=read();int a,b,c;
for(int i=;i<=n;i++) g[i]=read();
build(,,n);
while(q--)
{
a=read();
if(a==) {a=read(),b=read(),c=read();mdfp(,,n,a+,b+,c);}
else if(a==) {a=read(),b=read(),c=read();mdfd(,,n,a+,b+,c);}
else if(a==) {a=read(),b=read();printf("%lld\n",querym(,,n,a+,b+));}
else if(a==) {a=read(),b=read();printf("%lld\n",querys(,,n,a+,b+));}
}
}

T2:loj 6030 矩阵

题目大意:

一个黑白矩阵 可以把一行的顺序变成一列

求最少操作数

思路:

可以先做出一行黑色的

然后把所有不是完整一列的黑色变成黑色

做出黑色的最少步数是每一行的白色个数+(如果该行对应的列是否有黑色+1)

 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
#define ll long long
#define inf 2147483611
#define MAXN 1010
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-;ch=getchar();}
while(isdigit(ch)) {x=x*+ch-'';ch=getchar();}
return x*f;
}
int ok,n,f[MAXN],cnt1[MAXN],cnt2[MAXN],ans;
char maze[MAXN][MAXN];
int main()
{
n=read(),ans=*n+;
for(int i=;i<=n;i++)
{
scanf("%s",maze[i]+);
for(int j=;j<=n;j++)
if(maze[i][j]=='#') f[j]=,ok++;
else cnt1[i]++,cnt2[j]++;
}
if(!ok) {puts("-1");return ;}
for(int i=;i<=n;i++)
ans=min(ans,cnt1[i]+(!f[i]?:));
for(int i=;i<=n;i++)
ans+= cnt2[i]?:;
printf("%d",ans);
}

T3:loj 6031 字符串

雅礼集训 2017 Day1的更多相关文章

  1. 「雅礼集训 2017 Day1」 解题报告

    「雅礼集训 2017 Day1」市场 挺神仙的一题.涉及区间加.区间除.区间最小值和区间和.虽然标算就是暴力,但是复杂度是有保证的. 我们知道如果线段树上的一个结点,\(max=min\) 或者 \( ...

  2. [LOJ 6031]「雅礼集训 2017 Day1」字符串

    [LOJ 6031] 「雅礼集训 2017 Day1」字符串 题意 给定一个长度为 \(n\) 的字符串 \(s\), \(m\) 对 \((l_i,r_i)\), 回答 \(q\) 个询问. 每个询 ...

  3. [LOJ 6030]「雅礼集训 2017 Day1」矩阵

    [LOJ 6030] 「雅礼集训 2017 Day1」矩阵 题意 给定一个 \(n\times n\) 的 01 矩阵, 每次操作可以将一行转置后赋值给某一列, 问最少几次操作能让矩阵全为 1. 无解 ...

  4. [LOJ 6029]「雅礼集训 2017 Day1」市场

    [LOJ 6029] 「雅礼集训 2017 Day1」市场 题意 给定一个长度为 \(n\) 的数列(从 \(0\) 开始标号), 要求执行 \(q\) 次操作, 每次操作为如下四种操作之一: 1 l ...

  5. 矩阵[雅礼集训 2017 Day1]

    SOL 奇奇怪怪的贪心(你也不要问我为什么) #include<bits/stdc++.h> #define N 1007 int f[N][N],sum,ans,Ha,bo,n,Ans; ...

  6. loj#6031. 「雅礼集训 2017 Day1」字符串(SAM 广义SAM 数据分治)

    题意 链接 Sol \(10^5\)次询问每次询问\(10^5\)个区间..这种题第一感觉就是根号/数据分治的模型. \(K\)是个定值这个很关键. 考虑\(K\)比较小的情况,可以直接暴力建SAM, ...

  7. loj#6030. 「雅礼集训 2017 Day1」矩阵(贪心 构造)

    题意 链接 Sol 自己都不知道自己怎么做出来的系列 不难观察出几个性质: 最优策略一定是先把某一行弄黑,然后再用这一行去覆盖不是全黑的列 无解当且仅当无黑色.否则第一个黑色所在的行\(i\)可以先把 ...

  8. loj#6029. 「雅礼集训 2017 Day1」市场(线段树)

    题意 链接 Sol 势能分析. 除法是不能打标记的,所以只能暴力递归.这里我们加一个剪枝:如果区间内最大最小值的改变量都相同的话,就变成区间减. 这样复杂度是\((n + mlogn) logV\)的 ...

  9. 【loj6029】「雅礼集训 2017 Day1」市场&&【uoj#228】基础数据结构练习题

    题解: 这两道题加上区间取min max应该算线段树几道比较不寻常的题目 其实也是挺好理解的 对于区间/d 显然在log次后就会等于0 而我们注意到如果区间中数都相等那么就可以一起除 也就是说每个区间 ...

  10. 【loj6029】「雅礼集训 2017 Day1」市场 线段树+均摊分析

    题目描述 给出一个长度为 $n$ 的序列,支持 $m$ 次操作,操作有四种:区间加.区间下取整除.区间求最小值.区间求和. $n\le 100000$ ,每次加的数在 $[-10^4,10^4]$ 之 ...

随机推荐

  1. DHU Club Festival(数学)

    链接: http://acm.dhu.edu.cn/problem/view.html?problemId=5272 题意: 给定n瓶不同浓度的液体, 每次可以挑选x(x>=2)瓶混合, 求最后 ...

  2. SSH配置—Linux下实现免密码登录

    首先,假设我们有两台服务器,服务器名称分别是 master 和 slave1,我们现在需要做的就是在服务器 master 上面登录 服务器 slave1 不需要输入密码就可以登录成功,如下图所示. 下 ...

  3. Selenium IDE-自动化实战

    1.输入测试 Base URL 2.打开录制按钮(默认是录制状态,点击一下就是停止,再次点击,又继续录制) 3.在浏览器界面进行相关操作(比如输入selenium,点击搜索按钮,查看搜索结果),之后点 ...

  4. MTK android L使用汇顶TP如何使用B协议

    使用B协议上报之前的代码: #include "tpd.h" #include "tpd_custom_gt9xx.h" #ifndef TPD_NO_GPIO ...

  5. [K/3Cloud] 关于单据转换的问题

    1. 单据转换,是否支持重复下推,支持新增下推和更新下推? 答:支持重复下推,是否允许下推受以下因素: 1).源分录是否是有效状态(源单单头状态会自动影响分录,下同),例如已审核.未关闭.未作废: 2 ...

  6. Jackson 字符串转List<Map>

    String a = "[{\"id\":27,\"text\":\"网络\"},{\"id\":32,\&q ...

  7. HDU——1285 确定比赛名次

    确定比赛名次 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  8. HTTPS 是如何保证安全的?

    每当我们讨论到信息安全的时候,我们最长接触到的信息加密传输的方式莫过于 HTTPS 了,当我们浏览器地址栏闪现出绿色时,就代表着这个网站支持 HTTPS 的加密信息传输方式,并且你与它的连接确实被加密 ...

  9. JDBC的数据类型

    以下内容引用自http://wiki.jikexueyuan.com/project/jdbc/data-types.html: JDBC驱动程序在将Java数据类型发送到数据库之前,会将其转换为相应 ...

  10. Canon iP2780/iP2788 清零软件

    http://www.drvsky.com/driver/iP2780_Tools.htm http://www.dyjqd.com/soft/6085.html#download http://v. ...