GAN Generative Adversarial Network 生成式对抗网络-相关内容
参考:
https://baijiahao.baidu.com/s?id=1568663805038898&wfr=spider&for=pc
Generative Adversarial Network
GAN基础和优点
这些惊艳的工作基本都是2016年8月甚至10月以后的,也就是 GAN 被提出两年后。这是因为,虽然 GAN 有非常吸引人的性质,想要训练好它并不容易。经过两年的摸索、思考与尝试,才有了如今的积累和突破。
那么这个非常吸引人的 GAN 是什么样呢。其实 GAN 最初让人“哇”的地方在于,作为一个生成模型,GAN 就像魔术师变魔术一样,只需要一个噪音(噪音向量),就可以生成一只兔子!
在这样反复的练习中,作为魔术师的 GAN 扮演的是生成模型的角色,目的是要不断地提高自己的魔术水平,从而变出更活灵活现的兔子;而观众扮演的是一种判别模型的角色,目的是考察和激励魔术师提高自己的水平。但是这种激励是通过批评或者惩罚的方式完成的。
严格来说,一个 GAN 框架,最少(但不限于)拥有两个组成部分,一个是生成模型 G,一个是判别模型 D。在训练过程中,会把生成模型生成的样本和真实样本随机地传送一张(或者一个 batch)给判别模型 D。判别模型 D 的目标是尽可能正确地识别出真实样本(输出为“真”,或者1),和尽可能正确地揪出生成的样本,也就是假样本(输出为“假”,或者0)。
这两个目标分别对应了下方的目标函数的第一和第二项。
而生成模型的目标则和判别模型相反,就是尽可能最小化判别模型揪出它的概率。这样 G 和 D 就组成了一个 min-max game,在训练过程中双方都不断优化自己,直到达到平衡——双方都无法变得更好,也就是假样本与真样本完全不可区分。
这样 G 和 D 就组成了一个 min-max game,在训练过程中双方都不断优化自己,直到达到平衡——双方都无法变得更好,也就是假样本与真样本完全不可区分。
通过这样的巧妙设计,GAN 就拥有了一个非常吸引人的性质。GAN 中的 G 作为生成模型,不需要像传统图模型一样,需要一个严格的生成数据的表达式。这就避免了当数据非常复杂的时候,复杂度过度增长导致的不可计算。同时,它也不需要 inference 模型中的一些庞大计算量的求和计算。它唯一的需要的就是,一个噪音输入,一堆无标准的真实数据,两个可以逼近函数的网络。
剩下的就看不懂了。。。
能知识再多积累一些,再看剩下的吧:
https://mp.weixin.qq.com/s?__biz=MzAwMjM3MTc5OA==&mid=2652692740&idx=1&sn=f1b134f63eb0bf5e4d6759db4d740e58
GAN Generative Adversarial Network 生成式对抗网络-相关内容的更多相关文章
- GAN (Generative Adversarial Network)
https://www.bilibili.com/video/av9770302/?p=15 前面说了auto-encoder,VAE可以用于生成 VAE的问题, AE的训练是让输入输出尽可能的接近, ...
- 【神经网络与深度学习】生成式对抗网络GAN研究进展(五)——Deep Convolutional Generative Adversarial Nerworks,DCGAN
[前言] 本文首先介绍生成式模型,然后着重梳理生成式模型(Generative Models)中生成对抗网络(Generative Adversarial Network)的研究与发展.作者 ...
- 生成对抗网络(Generative Adversarial Network)阅读笔记
笔记持续更新中,请大家耐心等待 首先需要大概了解什么是生成对抗网络,参考维基百科给出的定义(https://zh.wikipedia.org/wiki/生成对抗网络): 生成对抗网络(英语:Gener ...
- 生成式对抗网络(GAN)学习笔记
图像识别和自然语言处理是目前应用极为广泛的AI技术,这些技术不管是速度还是准确度都已经达到了相当的高度,具体应用例如智能手机的人脸解锁.内置的语音助手.这些技术的实现和发展都离不开神经网络,可是传统的 ...
- AI 生成式对抗网络(GAN)
生成式对抗网络(Generative Adversarial Network,简称GAN),主要由两部分构成:生成模型G和判别模型D.训练GAN就是两种模型的对抗过程. 生成模型:利用任意噪音(ran ...
- 不要怂,就是GAN (生成式对抗网络) (一)
前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现. 自从 Ian Goodf ...
- 生成式对抗网络GAN 的研究进展与展望
生成式对抗网络GAN的研究进展与展望.pdf 摘要: 生成式对抗网络GAN (Generative adversarial networks) 目前已经成为人工智能学界一个热门的研究方向. GAN的基 ...
- 生成式对抗网络(GAN)
生成对抗网络(GAN),是深度学习模型之一,2014年lan Goodfellow的开篇之作Generative Adversarial Network, GAN概述 GAN包括两个模型,一个是生成模 ...
- 不要怂,就是GAN (生成式对抗网络) (一): GAN 简介
前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现. 自从 Ian Goodf ...
随机推荐
- uva12174 滑动窗口+预处理
注意理解题意,不是排列种类,而是下一个排序出现的时间滑动窗口,具体见代码,写了很多注释(紫书的思路1理解有点麻烦...)注:可以画一个轴来方便理解 #include<iostream> # ...
- vue >>> 编译失败问题 loader 待解决( iview vue脚手架生成)
vue >>> 编译失败问题 loader 待解决 用vue iview 脚手架 来一次试试~
- 转行做web前端,该如何进行短期快速自学,达到高新就业水平
就目前来说,毕业生如果想毕业就找到高薪的工作,互联网成为了第一个选择,在所有的职业中,不靠任何关系,全凭自己的能力就业,就是程序开发,而web前端开发是目最很热门的行业,在未来五年之内,web前端开发 ...
- vs2010的资源视图中,对话框显示数字的解决方法之一
以上是不正常显示. 我这次遇到该问题的原因是资源名IDD_DLG_INTENSITY重复定义导致的, 所以在resource.h文件中去除重复定义就好了. 正常应该显示DD_XXX,如下图所示
- Omnidirectional DSO: Direct Sparse Odometry with Fisheye Cameras 论文摘要
1. Abstract 通过一种Unified Omnidirectional Model作为投影方程. 这种方式可以使用图像的所有内容包括有强畸变的区域,而现存的视觉里程计方案只能修正或者切掉来使用 ...
- 将中文库导入到ARM板子中以解决中文显示乱码的教程
1.将中文字符集导入到ARM板子中的/usr/fonts/目录下 在这里我们使用的字符集为:DroidSansFallback.ttf 下载地址为:https://pan.baidu.com/s/1e ...
- python3.x Day6 IO多路复用
IO多路复用import asyncio 这个是异步IO模块 这个还不知道怎么用 select poll epoll 都是IO多路复用 windows 仅支持select linux2.6以后 支持e ...
- 2018 GDCPC 省赛总结
第二次参加省赛了,对比上年连STL都不会的acm入门者来说, 今年是接触acm的第二年. 首先要说的是今年的省赛比上年人数多了很多, 闭幕式200多支队伍坐满了整个礼堂还要站着不少人,所以今年的竞争其 ...
- react 语法细节总结说明
1.当要获取某个数据列表中的某个字段时,用“.”附加的形式.例如:获取user中的balance字段,用this.props.user.balance 来表示. 2.当要打印某个数据或字段结果时,co ...
- 【Ajax 3】JavaScript封装Ajax
导读:上一篇博客简单介绍了一下对Ajax中的核心对象XMLHttpRequest的封装.那么为了方便对Ajax的应用,我们还需要进一步的对Ajax的基本功能进行下一步的封装,不得不说的是早就有人专门写 ...