GAN Generative Adversarial Network 生成式对抗网络-相关内容
参考:
https://baijiahao.baidu.com/s?id=1568663805038898&wfr=spider&for=pc
Generative Adversarial Network
GAN基础和优点
这些惊艳的工作基本都是2016年8月甚至10月以后的,也就是 GAN 被提出两年后。这是因为,虽然 GAN 有非常吸引人的性质,想要训练好它并不容易。经过两年的摸索、思考与尝试,才有了如今的积累和突破。
那么这个非常吸引人的 GAN 是什么样呢。其实 GAN 最初让人“哇”的地方在于,作为一个生成模型,GAN 就像魔术师变魔术一样,只需要一个噪音(噪音向量),就可以生成一只兔子!

在这样反复的练习中,作为魔术师的 GAN 扮演的是生成模型的角色,目的是要不断地提高自己的魔术水平,从而变出更活灵活现的兔子;而观众扮演的是一种判别模型的角色,目的是考察和激励魔术师提高自己的水平。但是这种激励是通过批评或者惩罚的方式完成的。
严格来说,一个 GAN 框架,最少(但不限于)拥有两个组成部分,一个是生成模型 G,一个是判别模型 D。在训练过程中,会把生成模型生成的样本和真实样本随机地传送一张(或者一个 batch)给判别模型 D。判别模型 D 的目标是尽可能正确地识别出真实样本(输出为“真”,或者1),和尽可能正确地揪出生成的样本,也就是假样本(输出为“假”,或者0)。
这两个目标分别对应了下方的目标函数的第一和第二项。

而生成模型的目标则和判别模型相反,就是尽可能最小化判别模型揪出它的概率。这样 G 和 D 就组成了一个 min-max game,在训练过程中双方都不断优化自己,直到达到平衡——双方都无法变得更好,也就是假样本与真样本完全不可区分。
这样 G 和 D 就组成了一个 min-max game,在训练过程中双方都不断优化自己,直到达到平衡——双方都无法变得更好,也就是假样本与真样本完全不可区分。
通过这样的巧妙设计,GAN 就拥有了一个非常吸引人的性质。GAN 中的 G 作为生成模型,不需要像传统图模型一样,需要一个严格的生成数据的表达式。这就避免了当数据非常复杂的时候,复杂度过度增长导致的不可计算。同时,它也不需要 inference 模型中的一些庞大计算量的求和计算。它唯一的需要的就是,一个噪音输入,一堆无标准的真实数据,两个可以逼近函数的网络。
剩下的就看不懂了。。。
能知识再多积累一些,再看剩下的吧:
https://mp.weixin.qq.com/s?__biz=MzAwMjM3MTc5OA==&mid=2652692740&idx=1&sn=f1b134f63eb0bf5e4d6759db4d740e58
GAN Generative Adversarial Network 生成式对抗网络-相关内容的更多相关文章
- GAN (Generative Adversarial Network)
https://www.bilibili.com/video/av9770302/?p=15 前面说了auto-encoder,VAE可以用于生成 VAE的问题, AE的训练是让输入输出尽可能的接近, ...
- 【神经网络与深度学习】生成式对抗网络GAN研究进展(五)——Deep Convolutional Generative Adversarial Nerworks,DCGAN
[前言] 本文首先介绍生成式模型,然后着重梳理生成式模型(Generative Models)中生成对抗网络(Generative Adversarial Network)的研究与发展.作者 ...
- 生成对抗网络(Generative Adversarial Network)阅读笔记
笔记持续更新中,请大家耐心等待 首先需要大概了解什么是生成对抗网络,参考维基百科给出的定义(https://zh.wikipedia.org/wiki/生成对抗网络): 生成对抗网络(英语:Gener ...
- 生成式对抗网络(GAN)学习笔记
图像识别和自然语言处理是目前应用极为广泛的AI技术,这些技术不管是速度还是准确度都已经达到了相当的高度,具体应用例如智能手机的人脸解锁.内置的语音助手.这些技术的实现和发展都离不开神经网络,可是传统的 ...
- AI 生成式对抗网络(GAN)
生成式对抗网络(Generative Adversarial Network,简称GAN),主要由两部分构成:生成模型G和判别模型D.训练GAN就是两种模型的对抗过程. 生成模型:利用任意噪音(ran ...
- 不要怂,就是GAN (生成式对抗网络) (一)
前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现. 自从 Ian Goodf ...
- 生成式对抗网络GAN 的研究进展与展望
生成式对抗网络GAN的研究进展与展望.pdf 摘要: 生成式对抗网络GAN (Generative adversarial networks) 目前已经成为人工智能学界一个热门的研究方向. GAN的基 ...
- 生成式对抗网络(GAN)
生成对抗网络(GAN),是深度学习模型之一,2014年lan Goodfellow的开篇之作Generative Adversarial Network, GAN概述 GAN包括两个模型,一个是生成模 ...
- 不要怂,就是GAN (生成式对抗网络) (一): GAN 简介
前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现. 自从 Ian Goodf ...
随机推荐
- git命令使用(三)
git的使用--分支的使用 我们都知道拉取代码的时候,拉下来的是默认的分支,但我们需要的是,其他分支的使用操作 开始,拉取项目 git clone url 查看分支,显示默认分支 git branch ...
- Go:类型断言
一.基本介绍 类型断言:由于接口是一般类型,不知道具体类型,如果要转成具体类型,就需要使用类型断言. 如果希望将一个空接口类型重新转换成对应的类型,那么需要使用类型断言,能转换成功是因为这个空接口原先 ...
- HTML5结构
1.显示编排内容区域块(明确使用section等元素创建文档结构,在每个区域块中使用标题元素) 2.隐示编排内容区域块(不明确使用section等元素,而是根据网页需求来将各级的元素创建出来) 3.标 ...
- 如何禁用python警告
有-W选项. python -W ignore foo.py 所属网站分类: python基础 > 综合&其它 作者:jiem 链接:http://www.pythonheidong.c ...
- 一个关于vue+mysql+express的全栈项目(六)------ 聊天模型的设计
一.数据模型的设计 这里我们先不讨论群聊的模型,指讨论两个人之间的聊天,我们可以把两个人实时聊天抽象为(点对点)的实时通讯,如下图 我们上面的所说的模型其实也就是数据包的模型应该怎么设计,换句话说就是 ...
- 杭电 2141 Can you find it? (二分法)
Description Give you three sequences of numbers A, B, C, then we give you a number X. Now you need t ...
- Hyperledger Fabric创建通道抛错Error: got unexpected status: FORBIDDEN -- Failed to reach implicit threshold of 1 sub-policies, required 1 remaining: permission denied解决方案
安装Hyperledger Fabric,服务整个都跑起来了,但是抛了一个错,Error: got unexpected status: FORBIDDEN -- Failed to reach im ...
- java环境配置——jdk8
在官网下载最新版本的jdk 测试版本:jdk-8u60-windows-x64.exe 测试环境:Windows Server 2012 R2 Standard X64 开始执行安装 安装过程中会选 ...
- 【07】QQ群管理公告小结:
[07]QQ群管理公告小结: 01,请看公告遵守相关规定. 02,群内除QQ自带的缺省表情外(不是QQ的VIP或大图表情),禁止发送大表情,大图片(展示问题的屏幕截图除外), 03,修改群名片 ...
- github私有库购买信息
github私有库购买信息 一年84美元. 换算成人民币是:532元. 话说其他开发者都买了么?