单纯形&&线性规划
沦为了背板子...wyfcyx的ppt
#include<bits/stdc++.h>
using namespace std;
const int N = ;
const double eps = 1e-, inf = 1e18;
int n, m, l, e, t;
double k;
double a[N][N], ans[N];
int id[N << ];
void pivot(int l, int e)
{
swap(id[n + l], id[e]);
double r = a[l][e]; a[l][e] = ;
for(int i = ; i <= n; ++i) a[l][i] /= r;
for(int i = ; i <= m; ++i) if(i != l)
{
double r = a[i][e]; a[i][e] = ;
for(int j = ; j <= n; ++j) a[i][j] -= r * a[l][j];
}
}
int main()
{
scanf("%d%d%d", &n, &m, &t);
for(int i = ; i <= n; ++i) scanf("%lf", &a[][i]), id[i] = i;
for(int i = ; i <= m; ++i)
{
for(int j = ; j <= n; ++j) scanf("%lf", &a[i][j]);
scanf("%lf", &a[i][]);
}
while(true)
{
l = e = ; k = -eps;
for(int i = ; i <= m; ++i) if(a[i][] < k) { l = i; k = a[i][]; }
if(!l) break;
for(int i = n; i; --i) if(a[l][i] < -eps)
{ e = i; break; }
if(!e) { puts("Infeasible"); return ; }
pivot(l, e);
}
while(true)
{
l = e = ;
for(int i = ; i <= n; ++i) if(a[][i] > eps)
{ e = i; break; }
if(!e) break;
k = inf;
for(int i = ; i <= m; ++i) if(a[i][e] > eps && a[i][] / a[i][e] < k)
{ k = a[i][] / a[i][e]; l = i; }
if(!l) { puts("Unbounded"); return ; }
pivot(l, e);
}
printf("%.10f\n", -a[][]);
if(!t) return ;
for(int i = ; i <= m; ++i) ans[id[i + n]] = a[i][];
for(int i = ; i <= n; ++i) printf("%.10f ", ans[i]);
return ;
}
单纯形&&线性规划的更多相关文章
- 软件推荐-国内参数优化软件:1stOpt - First Optimizationg
首页:http://www.7d-soft.com/index.htm 4.0新功能 (预定2010年8月6日): 1:支持复数拟合.复数方程组计算: 2:支持微分方程拟合求解: 3:通用全局优化求解 ...
- BZOJ.1061.[NOI2008]志愿者招募(线性规划 对偶原理 单纯形 / 费用流SPFA)
题目链接 线性规划 用\(A_{ij}=0/1\)表示第\(i\)天\(j\)类志愿者能否被招募,\(x_i\)为\(i\)类志愿者招募了多少人,\(need_i\)表示第\(i\)天需要多少人,\( ...
- 【UOJ #179】线性规划 单纯形模板
http://uoj.ac/problem/179 终于写出来了单纯性算法的板子,抄的网上大爷的qwq 辅助线性规划找非基变量时要加个随机化才能A,我也不知道为什么,卡精度吗? 2017-3-6UPD ...
- LP线性规划求解 之 单纯形 算法
LP线性规划求解 之 单纯形 算法 认识-单纯形 核心: 顶点旋转 随机找到一个初始的基本可行解 不断沿着可行域旋转(pivot) 重复2,直到结果不能改进为止 案例-过程 以上篇的case2的松弛型 ...
- 线性规划(Simplex单纯形)与对偶问题
线性规划 首先一般所有的线性规划问题我们都可以转换成如下标准型: 但是我们可以发现上面都是不等式,而我们计算中更希望是等式,所以我们引入这个新的概念:松弛型: 很显然我们最后要求是所有的约束左边的变量 ...
- 线性规划之单纯形算法矩阵描述与python实现
声明 本文为本人原创,转载请注明出处.本文仅发表在博客园,作者LightningStar. 问题描述 所有的线性规划问题都可以归约到标准型的问题,规约过程比较简单且已经超出本文范围,不再描述,可以参考 ...
- UVA 10498 Happiness(线性规划-单纯形)
Description Prof. Kaykobad has given Nasa the duty of buying some food for the ACM contestents. Nasa ...
- 单纯形求解线性规划(BZOJ1061)
推荐一篇论文:http://wenku.baidu.com/view/ce5784754a7302768f99391d 我们设xi为第i个志愿者的招募次数,以样例为例,则不难列出如下的线性规划方程: ...
- 【UOJ#179】线性规划 单纯形
题目链接: http://uoj.ac/problem/179 Solution 就是单纯形模板题,这篇博客就是存一下板子. Code #include<iostream> #includ ...
随机推荐
- 【nginx】解决nginx搭建图片服务器访问图片404
图片通过ftp服务上传到/home/ftpuser/www/images目录下后访问 http://192.168.128.128/images/xxx.jpg 还是 404 NOT FOUND ,解 ...
- jsp中的basePath,获取应用的路径
1 2 3 4 5 String path = request.getContextPath(); String basePath = request.getScheme()+": ...
- 诊断:ORA-38760: This database instance failed to turn on flashback database
$ oerr ora 38760 38760, 00000, "This database instance failed to turn on flashback database&quo ...
- python whl模块安装方法
搞了半个小时可算是安装上去了 做法 ①先cmd输入Python看一下自己的Python是什么版本的,以及自己的平台,我这里是win32以及python3.6 ②然后去寻找合适的whl,注意cp就是版本 ...
- 微信小程序 setData动态修改数据数组的值
1.问题说明 有一组数据,用来存储图片路径,动态修改图片的路径来上传图片,而小程序JS只能通过事件获取时机和setData方法修改数据来改变view. 而用这样写的方式明显是错误的 2.解决办法 字符 ...
- 每日命令:(11)nl
nl命令在linux系统中用来计算文件中行号.nl 可以将输出的文件内容自动的加上行号!其默认的结果与 cat -n 有点不太一样, nl 可以将行号做比较多的显示设计,包括位数与是否自动补齐 0 等 ...
- 配置servlet出现java.lang.ClassNotFoundException: com.microsoft.sqlserver.jdbc.SQLServerDriver
拷贝一份sqljdbc.jar放到/WEB-INF/lib即可
- String类的判断功能
/* * Object:是类层级结构中的根类,所有的类都直接或间接的继承自该类. * 如果一个方法的形式参数是Object,那么这里我们就可以传递它的任意的子类对象. * * String类的判断功能 ...
- vue.js中的路由vue-router2.0使用
在我们平时工作中,我们有时候会有需求,按照不同的规则,加载不同的组件,页面不去跳转,常见的操作是ajax的异步操作,实现局部刷新加载新数据 在vue中,我们写了很多不同的组件,这时候,实现不刷新调用新 ...
- 常见mysql的数据迁移
1.处理把A表中的部分列复制到B表中主要处理同一库. UPDATE T_EVENT EVE, T_IPMAP MAP SET EVE.c_staff_code = MAP.c_staff_code, ...