k[原创]Faster R-CNN论文翻译
物体检测论文翻译系列:
- R-CNN
- SPP-net
- Fast R-CNN
- Faster R-CNN
Faster R-CNN论文翻译
Faster R-CNN是互怼完了的好基友一起合作出来的巅峰之作,本文翻译的比例比较小,主要因为本paper是前述paper的一个简单改进,方法清晰,想法自然。什么想法?就是把那个一直明明应该换掉却一直被几位大神挤牙膏般地拖着不换的选择性搜索算法,即区域推荐算法。在Fast R-CNN的基础上将区域推荐换成了神经网络,而且这个神经网络和Fast R-CNN的卷积网络一起复用,大大缩短了计算时间。同时mAP又上了一个台阶,我早就说过了,他们一定是在挤牙膏。
Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks
摘要
1. 介绍

2 相关工作
3 FASTER R-CNN

3.1 区域推荐网络

3.1.1 锚点
平移不变性锚点
多尺度锚点作为回归参照物
3.1.2 损失函数




3.1.3 训练RPNs
3.2 RPN and Fast R-CNN之间共享特征
3.3 实现细节
4 EXPERIMENTS
5 CONCLUSION
参考文献
[2] R. Girshick, “Fast R-CNN,” in IEEE International Conference onComputer Vision (ICCV), 2015.
[3] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in InternationalConference on Learning Representations (ICLR), 2015.
[4] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W. Smeulders, “Selective search for object recognition,” InternationalJournal of Computer Vision (IJCV), 2013.
[5] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich featurehierarchies for accurate object detection and semantic segmentation,” in IEEE Conference on Computer Vision and PatternRecognition (CVPR), 2014.
[6] C. L. Zitnick and P. Dollar, “Edge boxes: Locating object ´proposals from edges,” in European Conference on ComputerVision (ECCV), 2014.
[7] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutionalnetworks for semantic segmentation,” in IEEE Conference onComputer Vision and Pattern Recognition (CVPR), 2015.
[8] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object detection with discriminatively trained partbased models,” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2010.
[9] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,and Y. LeCun, “Overfeat: Integrated recognition, localizationand detection using convolutional networks,” in InternationalConference on Learning Representations (ICLR), 2014.
[10] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object detection with region proposal networks,” inNeural Information Processing Systems (NIPS), 2015.
[11] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, andA. Zisserman, “The PASCAL Visual Object Classes Challenge2007 (VOC2007) Results,” 2007.
[12] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and C. L. Zitnick, “Microsoft COCO: Com- ´mon Objects in Context,” in European Conference on ComputerVision (ECCV), 2014.
[13] S. Song and J. Xiao, “Deep sliding shapes for amodal 3d objectdetection in rgb-d images,” arXiv:1511.02300, 2015.
[14] J. Zhu, X. Chen, and A. L. Yuille, “DeePM: A deep part-basedmodel for object detection and semantic part localization,”arXiv:1511.07131, 2015.
[15] J. Dai, K. He, and J. Sun, “Instance-aware semantic segmentation via multi-task network cascades,” arXiv:1512.04412, 2015.
[16] J. Johnson, A. Karpathy, and L. Fei-Fei, “Densecap: Fullyconvolutional localization networks for dense captioning,”arXiv:1511.07571, 2015.
[17] D. Kislyuk, Y. Liu, D. Liu, E. Tzeng, and Y. Jing, “Human curation and convnets: Powering item-to-item recommendationson pinterest,” arXiv:1511.04003, 2015.
[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learningfor image recognition,” arXiv:1512.03385, 2015.
[19] J. Hosang, R. Benenson, and B. Schiele, “How good are detection proposals, really?” in British Machine Vision Conference(BMVC), 2014.
[20] J. Hosang, R. Benenson, P. Dollar, and B. Schiele, “What makes ´for effective detection proposals?” IEEE Transactions on PatternAnalysis and Machine Intelligence (TPAMI), 2015.
[21] N. Chavali, H. Agrawal, A. Mahendru, and D. Batra,“Object-Proposal Evaluation Protocol is ’Gameable’,” arXiv:1505.05836, 2015.
[22] J. Carreira and C. Sminchisescu, “CPMC: Automatic object segmentation using constrained parametric min-cuts,”IEEE Transactions on Pattern Analysis and Machine Intelligence(TPAMI), 2012.
[23] P. Arbelaez, J. Pont-Tuset, J. T. Barron, F. Marques, and J. Malik, ´“Multiscale combinatorial grouping,” in IEEE Conference onComputer Vision and Pattern Recognition (CVPR), 2014.
[24] B. Alexe, T. Deselaers, and V. Ferrari, “Measuring the objectness of image windows,” IEEE Transactions on Pattern Analysisand Machine Intelligence (TPAMI), 2012.
[25] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networksfor object detection,” in Neural Information Processing Systems(NIPS), 2013.
[26] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, “Scalableobject detection using deep neural networks,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.
[27] C. Szegedy, S. Reed, D. Erhan, and D. Anguelov, “Scalable,high-quality object detection,” arXiv:1412.1441 (v1), 2015.
[28] P. O. Pinheiro, R. Collobert, and P. Dollar, “Learning tosegment object candidates,” in Neural Information ProcessingSystems (NIPS), 2015.
[29] J. Dai, K. He, and J. Sun, “Convolutional feature maskingfor joint object and stuff segmentation,” in IEEE Conference onComputer Vision and Pattern Recognition (CVPR), 2015.
[30] S. Ren, K. He, R. Girshick, X. Zhang, and J. Sun, “Object detection networks on convolutional feature maps,”arXiv:1504.06066, 2015.
[31] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, andY. Bengio, “Attention-based models for speech recognition,”in Neural Information Processing Systems (NIPS), 2015.
[32] M. D. Zeiler and R. Fergus, “Visualizing and understandingconvolutional neural networks,” in European Conference onComputer Vision (ECCV), 2014.
[33] V. Nair and G. E. Hinton, “Rectified linear units improverestricted boltzmann machines,” in International Conference onMachine Learning (ICML), 2010.
[34] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,D. Erhan, and A. Rabinovich, “Going deeper with convolutions,” in IEEE Conference on Computer Vision and PatternRecognition (CVPR), 2015.
[35] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,W. Hubbard, and L. D. Jackel, “Backpropagation applied tohandwritten zip code recognition,” Neural computation, 1989.
[36] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,and L. Fei-Fei, “ImageNet Large Scale Visual RecognitionChallenge,” in International Journal of Computer Vision (IJCV),2015.
[37] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with deep convolutional neural networks,” in NeuralInformation Processing Systems (NIPS), 2012.
[38] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell, “Caffe: Convolutionalarchitecture for fast feature embedding,” arXiv:1408.5093, 2014.
[39] K. Lenc and A. Vedaldi, “R-CNN minus R,” in British MachineVision Conference (BMVC), 2015.
k[原创]Faster R-CNN论文翻译的更多相关文章
- [原创]Faster R-CNN论文翻译
Faster R-CNN论文翻译 Faster R-CNN是互怼完了的好基友一起合作出来的巅峰之作,本文翻译的比例比较小,主要因为本paper是前述paper的一个简单改进,方法清晰,想法自然.什 ...
- 深度学习论文翻译解析(十三):Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
论文标题:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 标题翻译:基于区域提议(Regi ...
- 深度学习论文翻译解析(四):Faster R-CNN: Down the rabbit hole of modern object detection
论文标题:Faster R-CNN: Down the rabbit hole of modern object detection 论文作者:Zhi Tian , Weilin Huang, Ton ...
- 深度学习论文翻译解析(三):Detecting Text in Natural Image with Connectionist Text Proposal Network
论文标题:Detecting Text in Natural Image with Connectionist Text Proposal Network 论文作者:Zhi Tian , Weilin ...
- R-CNN论文翻译
R-CNN论文翻译 Rich feature hierarchies for accurate object detection and semantic segmentation 用于精确物体定位和 ...
- SSD: Single Shot MultiBoxDetector英文论文翻译
SSD英文论文翻译 SSD: Single Shot MultiBoxDetector 2017.12.08 摘要:我们提出了一种使用单个深层神经网络检测图像中对象的方法.我们的方法,名为SSD ...
- 深度学习论文翻译解析(二):An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition
论文标题:An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application ...
- 论文翻译——R-CNN(目标检测开山之作)
R-CNN论文翻译 <Rich feature hierarchies for accurate object detection and semantic segmentation> 用 ...
- 【论文翻译】NIN层论文中英对照翻译--(Network In Network)
[论文翻译]NIN层论文中英对照翻译--(Network In Network) [开始时间]2018.09.27 [完成时间]2018.10.03 [论文翻译]NIN层论文中英对照翻译--(Netw ...
随机推荐
- MAPZONE GIS SDK接入Openlayers3之三——瓦片数据集接入
瓦片数据集接入实现思路: 1.构造ol.source.TileImage数据源,构造该数据源需要以下几项: 1)空间参考,通过如下代码构造 2)TileGrid,构造需要以下几项: a)原点 b)分辨 ...
- NetCore实现全局异常捕捉统一处理
做net项目时候,在Global.asax文件中可以通过Application_Error方法全局捕获异常并处理后统一跳转到自定义的错误页面. 下面是我个人在NetCore项目中实现全局捕获异常并统一 ...
- sizeThatFits and sizeToFit
http://liuxing8807.blog.163.com/blog/static/9703530520134381526554/ sizeThatFits and sizeToFit是UIVie ...
- [Vue @Component] Pass Vue Render Functions as Props for Powerful Patterns
Render functions open up a world of customization and control by using pure JavaScript rather than V ...
- Handling bundles in activities and fragments
Bundle is a useful data holder, which maps String values to various Parcelable types. So basicall ...
- [android]Xutils具体介绍
什么是Xutils xUtils 包括了非常多有用的android工具,xUtils 源于Afinal框架,对Afinal进行了大量重构,使得xUtils支持大文件上传,更全面的http请求协议支持, ...
- Hibernate基于注解的双向one-to-many映射关系的实现
在项目中用到了一对多的实体类关系映射,之前接触的都是基于配置文件的映射实现.可是公司的大部分都是基于注解的.因此自己參考之前的代码捣鼓了基于注解的一对多的映射关系实现. 背景: 一的一端:QingAo ...
- MySQL create table as与create table like对照
在MySQL数据库中,关于表的克隆有多种方式,比方我们能够使用create table ..as .. .也能够使用create table .. like ..方式. 然而这2种不同的方 ...
- leetCode 54.Spiral Matrix(螺旋矩阵) 解题思路和方法
Spiral Matrix Given a matrix of m x n elements (m rows, n columns), return all elements of the matri ...
- HVR数据复制软件部署之(一)--HUB端部署
HVR数据复制软件部署之(一)--HUB端部署 本文环境: OS: RHEL5.9 x86-64bit DB: Oracle 12.1.0.2 x86-64bit HVR:highgohvr-4.7. ...