题意翻译

你是一个程序猿,现在有一棵新年树(并不是传统的带着叶子的树)——它有四个节点: 1,2,3,4. 其中2,3,4的父亲都是1.

新年里,程序猿们往往会做一些有趣的事情。你则选择以往这棵树上加节点来取乐。 一个添加节点的操作是这样的:

1) 找到树上的一个叶子结点v

2) 设现在树上有n个节点,那么你现在会加入两个节点n+1和n+2,它们都会成为n的儿子.

你的任务是在做q次这样的操作,并在每做完一次后计算一次树的直径。来吧,我们一起来解决这道新年问题吧!

输入:

第一行一个整数\(q (1 ≤ q ≤ 5×10^5)\) ,表示操作次数。接下来q行,每行一个数v,表示你当前操作的节点。保证它一定是一个叶子结点。

输出:

q行,每行一个数,表示做了这个操作以后树的直径。


有一个小结论就是在合并两个树的时候

新合并出来的树的直径的两个端点一定是两个原树的直径的端点,因为只有6种方案,所以暴力判断一下就好了

先离线处理出整棵树,合并时用并查集合并

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
const int M = 1000005 ;
using namespace std ;
inline int read() {
char c = getchar() ; int x = 0 , w = 1 ;
while(c>'9'||c<'0') { if(c=='-') w = -1 ; c = getchar() ; }
while(c>='0'&&c<='9') { x = x*10+c-'0' ; c = getchar() ; }
return x*w ;
}
int n , m , hea[M] , num , q[M] , dep[M] , st[M][20] ;
int l[M] , r[M] , to[M] , f[M] , Res[M] ;
struct E { int Nxt , to ; } edge[M << 1] ;
inline void add_edge(int from , int to) {
edge[++num].Nxt = hea[from] ;
edge[num].to = to ; hea[from] = num ;
}
int find(int x) { if(f[x] != x) f[x] = find(f[x]) ; return f[x] ; }
void Dfs(int u , int father , int depth) {
dep[u] = depth ; st[u][0] = father ;
for(int i = hea[u] , v ; i ; i = edge[i].Nxt) {
v = edge[i].to ;
if(v == father) continue ;
Dfs(v , u , depth + 1) ;
}
}
inline void ST() {
for(int j = 1 ; j <= 19 ; j ++)
for(int i = 1 ; i <= n ; i ++)
st[i][j] = st[st[i][j - 1]][j - 1] ;
}
inline int LCA(int u , int v) {
if(dep[u] < dep[v]) swap(u , v) ;
for(int i = 19 ; i >= 0 ; i --)
if(dep[st[u][i]] >= dep[v])
u = st[u][i] ;
if(u == v) return u ;
for(int i = 19 ; i >= 0 ; i --)
if(st[u][i] != st[v][i])
u = st[u][i] , v = st[v][i] ;
return st[u][0] ;
}
int u , v , Ans , el , er , d ;
inline void Solve(int x , int y) {
u = find(x) , v = find(y) ;
Ans = 0 , el = 0 , er = 0 , d = 0 ;
Ans = dep[l[u]] + dep[r[u]] - (dep[LCA(l[u] , r[u])] << 1) , el = l[u] , er = r[u] ;
d = dep[l[v]] + dep[r[v]] - (dep[LCA(l[v] , r[v])] << 1) ;
if(d > Ans) Ans = d , el = l[v] , er = r[v] ;
d = dep[l[u]] + dep[l[v]] - (dep[LCA(l[u] , l[v])] << 1) ;
if(d > Ans) Ans = d , el = l[u] , er = l[v] ;
d = dep[l[u]] + dep[r[v]] - (dep[LCA(l[u] , r[v])] << 1) ;
if(d > Ans) Ans = d , el = l[u] , er = r[v] ;
d = dep[l[v]] + dep[r[u]] - (dep[LCA(l[v] , r[u])] << 1) ;
if(d > Ans) Ans = d , el = l[v] , er = r[u] ;
d = dep[r[u]] + dep[r[v]] - (dep[LCA(r[u] , r[v])] << 1) ;
f[v] = u ; l[u] = el , r[u] = er ;
}
int main() {
m = read() ; n = 1 ;
q[1] = 1 ; q[2] = 1 ;
to[1] = ++ n ; add_edge(1 , to[1]) ; add_edge(to[1] , 1) ;
to[2] = ++ n ; add_edge(1 , to[2]) ; add_edge(to[2] , 1) ;
to[3] = ++ n ; add_edge(1 , to[3]) ; add_edge(to[3] , 1) ;
for(int i = 3 ; i <= m + 2 ; i ++) {
q[i] = read() ;
to[i * 2 - 1] = ++ n ; add_edge(q[i] , to[i * 2 - 1]) ; add_edge(to[i * 2 - 1] , q[i]) ;
to[i << 1] = ++ n ; add_edge(q[i] , to[i << 1]) ; add_edge(to[i << 1] , q[i]) ;
}
for(int i = 1 ; i <= n ; i ++) f[i] = i , l[i] = i , r[i] = i ;
Dfs(1 , 1 , 1) ; ST() ;
for(int i = 1 ; i <= m + 3 ; i ++) {
Solve(q[i] , to[i * 2 - 1]) ;
if(i == 2) continue ;
Solve(q[i] , to[i << 1]) ;
if(i > 2) {
int u = find(q[i]) ;
Res[i - 2] = dep[l[u]] + dep[r[u]] - (dep[LCA(l[u] , r[u])] << 1) ;
}
}
for(int i = 1 ; i <= m ; i ++) printf("%d\n",Res[i]) ;
return 0 ;
}

CF379F New Year Tree的更多相关文章

  1. cf379F New Year Tree (树的直径+倍增lca)

    可以证明,如果合并两棵树,新的直径的端点一定是原来两树中直径的端点 可以把新加两个点的操作看成是把两个只有一个点的树合并到原来的树上,然后用其中的一个点去和原来树上的直径两端点更新直径就可以了 #in ...

  2. [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法

    二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...

  3. SAP CRM 树视图(TREE VIEW)

    树视图可以用于表示数据的层次. 例如:SAP CRM中的组织结构数据可以表示为树视图. 在SAP CRM Web UI的术语当中,没有像表视图(table view)或者表单视图(form view) ...

  4. 无限分级和tree结构数据增删改【提供Demo下载】

    无限分级 很多时候我们不确定等级关系的层级,这个时候就需要用到无限分级了. 说到无限分级,又要扯到递归调用了.(据说频繁递归是很耗性能的),在此我们需要先设计好表机构,用来存储无限分级的数据.当然,以 ...

  5. 2000条你应知的WPF小姿势 基础篇<45-50 Visual Tree&Logic Tree 附带两个小工具>

    在正文开始之前需要介绍一个人:Sean Sexton. 来自明尼苏达双城的软件工程师.最为出色的是他维护了两个博客:2,000Things You Should Know About C# 和 2,0 ...

  6. Leetcode 笔记 110 - Balanced Binary Tree

    题目链接:Balanced Binary Tree | LeetCode OJ Given a binary tree, determine if it is height-balanced. For ...

  7. Leetcode 笔记 100 - Same Tree

    题目链接:Same Tree | LeetCode OJ Given two binary trees, write a function to check if they are equal or ...

  8. Leetcode 笔记 99 - Recover Binary Search Tree

    题目链接:Recover Binary Search Tree | LeetCode OJ Two elements of a binary search tree (BST) are swapped ...

  9. Leetcode 笔记 98 - Validate Binary Search Tree

    题目链接:Validate Binary Search Tree | LeetCode OJ Given a binary tree, determine if it is a valid binar ...

随机推荐

  1. linux 常见名词及命令(四)

    yum仓库的配置 yum仓库的配置文件存放在/etc/yum.repos.d/目录中. 第一步:切换到/etc/yum.repos.d/目录中. 第二步:使用vim编辑器打开一个名为'rhel7.re ...

  2. 中国福利彩票,牛B,开奖和数据传输有什么关系?

    昨天,由中国教育电视台直播的福利彩票“双色球”15011期开奖,在没有事先预告的情况下突然取消.晚上11点40分左右,中国福利彩票发行管理中心唯一指定网络信息发布媒体——中彩网官方微博出乎意料地在网上 ...

  3. python之模块随笔记-os

    操作系统模块:import os os.remove() 删除文件 os.unlink() 删除链接文件 os.rename() 重命名文件 os.listdir() 列出指定目录下所有文件 os.c ...

  4. HDU 5876 补图 单源 最短路

    ---恢复内容开始--- Sparse Graph Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (J ...

  5. Eclipse的SVN插件 Subclipse

    原文:https://www.oschina.net/p/subclipse Subclipse 是一个为 Eclipse IDE 添加 Subversion 支持的项目.支持几乎所有版本的Eclip ...

  6. Mysql中错误日志、binlog日志、查询日志、慢查询日志简单介绍

    前言 数据库的日志是帮助数据库管理员,追踪分析数据库以前发生的各种事件的有力根据.mysql中提供了错误日志.binlog日志(二进制日志).查处日志.慢查询日志.在此,我力求解决下面问题:各个日志的 ...

  7. 我怎么在AD里面找到已经改名的Administrator账户?

    近期有博友问我一个问题,他是一个企业里面的IT管理员,他非常苦恼.他是一个新手,之前管理员交接的时候,没有交接更改的管理员username和password.他如今不知道哪个才是系统之前内置的admi ...

  8. PHP开发出来的万年历

    <?php /** * PHP万年历 */ class Calendar{ protected $_table;//table表格 protected $_currentDate;//当前日期 ...

  9. JAVA进阶-网络编程

    >通过套接字连接server Socket指代套接字 >读取随意站点的首页 --------- /** * @author Lean @date:2014-10-9 */ public c ...

  10. Java 中 modifer &#39;public&#39; is reduntant for interface methods

    http://androidren.com/index.php?qa=322&qa_1=java-%E4%B8%AD-modifer-public-is-reduntant-for-inter ...