准确的说应该叫树上分组背包?并不知道我写的这个叫啥

设计状态f[u][j]为在以点u为根的子树中有j个黑点,转移的时候另开一个数组,不能在原数组更新(因为会用到没更新时候的状态),方程式为g[j+k]=max(g[j+k],f[u][j]+f[e[i].to][k]+(k*(m-k)+(si[e[i].to]-k)*(n-m-(si[e[i].to]-k)))*e[i].va);,其中m'为题目描述中的k。

关于这个方程的由来,考虑一条边对答案的贡献,显然是这条边一边的黑点数量*另一边的黑点数量+一边的白点数量*另一边的白点数量,再乘上边权。

注意:size要在dp中加,dp完一棵子树再加上这棵子树的size。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=2005;
long long n,m,h[N],cnt,f[N][N],si[N],g[N];
struct qwe
{
long long ne,to,va;
}e[N<<1];
long long read()
{
long long r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(long long u,long long v,long long w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
e[cnt].va=w;
h[u]=cnt;
}
// void dfs(long long u,long long fa)
// {
// si[u]=1;
// for(long long i=h[u];i;i=e[i].ne)
// if(e[i].to!=fa)
// {
// dfs(e[i].to,u);
// si[u]+=si[e[i].to];
// }
// }
void dp(long long u,long long fa)
{
si[u]=1;
for(long long i=h[u];i;i=e[i].ne)
if(e[i].to!=fa)
{
dp(e[i].to,u);
memset(g,0,sizeof(g));
for(long long j=0;j<=min(m,si[u]);j++)
for(long long k=0;k<=min(m,si[e[i].to]);k++)
if(j+k<=m)
g[j+k]=max(g[j+k],f[u][j]+f[e[i].to][k]+(k*(m-k)+(si[e[i].to]-k)*(n-m-(si[e[i].to]-k)))*e[i].va);
for(long long j=0;j<=m;j++)
f[u][j]=g[j];
si[u]+=si[e[i].to];
}
}
int main()
{
n=read(),m=read();
for(long long i=1;i<n;i++)
{
long long x=read(),y=read(),z=read();
add(x,y,z);
add(y,x,z);
}
//dfs(1,0);
dp(1,0);
printf("%lld\n",f[1][m]);
return 0;
}

bzoj 4033: [HAOI2015]树上染色【树形dp】的更多相关文章

  1. bzoj 4033: [HAOI2015]树上染色 [树形DP]

    4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...

  2. BZOJ 4033 [HAOI2015]树上染色 ——树形DP

    可以去UOJ看出题人的题解. 这样的合并,每一个点对只在lca处被考虑到,复杂度$O(n^2)$ #include <map> #include <ctime> #includ ...

  3. BZOJ 4033: [HAOI2015]树上染色题解

    BZOJ 4033: [HAOI2015]树上染色题解(树形dp) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1327400 原题地址: BZOJ 403 ...

  4. 洛谷 P3177 [HAOI2015]树上染色 树形DP

    洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...

  5. BZOJ 4033[HAOI2015] 树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3188  Solved: 1366[Submit][Stat ...

  6. [BZOJ 4033] [HAOI2015] T1 【树形DP】

    题目链接:BZOJ - 4033 题目分析 使用树形DP,用 f[i][j] 表示在以 i 为根的子树,有 j 个黑点的最大权值. 这个权值指的是,这个子树内部的点对间距离的贡献,以及 i 和 Fat ...

  7. [BZOJ4033][HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2437  Solved: 1034[Submit][Stat ...

  8. 【BZOJ4033】[HAOI2015]树上染色 树形DP

    [BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...

  9. bzoj4033 [HAOI2015]树上染色——树形DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4033 树形DP,状态中加入 x 与父亲之间的边的贡献: 边权竟然是long long... ...

随机推荐

  1. The Doors--poj1556(最短路+判断点与线段的关系)

    http://poj.org/problem?id=1556 题目大意:从(0,5)走到(10,5)走的最短距离是多少 中间有最多18个隔着的墙  每个墙都有两个门  你只能从门通过 我的思路是  只 ...

  2. 109.Convert sorted list to BST

    /* * 109.Convert sorted list to BST * 2016.12.24 by Mingyang * 这里的问题是对于一个链表我们是不能常量时间访问它的中间元素的. * 这时候 ...

  3. Go和HTTPS(TLS)

    原文链接: http://studygolang.com/wr?u=http%3a%2f%2ftonybai.com%2f2015%2f04%2f30%2fgo-and-https%2f 近期在构思一 ...

  4. Nuget公布Dll

    今天要開始写ViewModel了,写完之后系统里的ViewModel都汇总到我这里.然后由我负责ViewModel的公布跟维护,所以Nuget公布Dll就要熟练啦~ 一,安装工具 1.Nuget Pa ...

  5. hdu 1879 继续畅通project

    本题链接:pid=1879http://">点击打开链接 本题大意: 输入n行数据.每行数据前两个表示该条路连通的两个村庄的编号,第三个表示修该条路的成本.最后的0或1表示该路未修或已 ...

  6. exadata(ilom) 练习

    Oracle(R) Integrated Lights Out Manager Version 3.0.16.10 r65138 Copyright (c) 2011, Oracle and/or i ...

  7. grep命令使用技巧

    grep如何实现全词查找例如:要查找name这个单词,反馈的查找结果不能包含namespace这样的模式,但是可以包含name()这样的模式,即要查找的单词两端不可以有其他的数字或者字母,但可以有空格 ...

  8. Android Material Design-Maintaining Compatibility(保持兼容性)-(七)

    转载请注明出处:http://blog.csdn.net/bbld_/article/details/40634829 翻译自: http://developer.android.com/traini ...

  9. python 获取代码宿主机名 ip

    1.获取hostname 相同代码 不同宿主机 日志名 互异 且 可识别宿主机 分布式爬虫 https://docs.python.org/3.6/library/socket.html#socket ...

  10. mysql 转换编码方式

    进入mysql 的安装文件夹找到 “ my.ini” 文件  (mysql配置文件) 一.编辑MySql的配置文件 vim /etc/my.cnf 在 [mysqld] 标签下加上三行 default ...